This is an excellent term, quoted "on a breadboard". It is on such boards that excellent inventions are often created. It is always important to be able to draw conclusions from tests. Don't be discouraged by adversity! On such a symbolic board I managed to "conjure up" a perfect new generation synchronous motor. Greetings, Sir!
Handōtai no suitchingu sonshitsu, tokuni denryoku sonshitsu wa tsuneni sonzai shimasu. Kore wa, gēto seigyo shingō ga kanzen ni seihōkei ni naru koto wanai tamedesu. Sarani, kono purosesu wa hindo no zōka to tomoni gekika shimasu. So no yōna jōkyōde wa, tsuneni iwayuru `chūyō' o sentaku suru hitsuyō ga arimasu. Kanpekina mono wa arimasen. Watashitachi wa tsuneni sore o mezashite doryoku shimasu. Gokigen'yō, sā! I do not know whether the electronic translator translated the text correctly. It is significant that it is difficult to switch transistors, especially power transistors, because it is impossible to get a perfectly square gate signal, especially during increased frequency. We always have to find the so-called "golden mean". Greetings, Sir!
Infineon's compact surface-mounted FETs are true jewels. For driver IC, was seeing mostly TI products that available around shortage, but no doubt their driver will also be the charm!
Ideally, supervision should always be effective over this power semiconductor switching. Short-circuiting the right-left switching is dangerous because the valve can be destroyed. There are always dilemmas like switching lag. If it is very short, there is a risk of this short-circuit, and if it is too long, the switching efficiency decreases. When designing a simple control based on two keying bridges, I used 8 Fairchild Semiconductors transistors and Omron EE-SB5 reflective microsensors for my new generation BLHF-RM synchronous motor. Such a system is not extremely precise, but very effective. Greetings, Sir!
Yes, Mr. Ichiken is right. A standard electromagnetic switch (coil and armature type) is sufficient to start and stop a three-phase motor or any other electric motor. However, when controlling the drive of an induction or synchronous motor with permanent magnets, a frequency converter adapted to the power and operating mode of the motor is needed.
ゲートドライブはね、 C-MOS 4000 シリーズの IC が似合うよ。 実際、電源電圧がある程度自由に決められて、ドライブ能力も丁度良い。 実際、全く同じ仕様で1回路だけが入ってドライブとして販売されてるほど。 まあ、試して使うなら、そういうことも重要かな。
@ZygmuntKiliszewski Жыл бұрын
I used for the construction of the controller, a new generation of a four-phase synchronous motor - Brushless Hybrid Fast - Rotation Motor (BLHF-RM), eight Fairchild Semiconductor IGBT transistors with a power of approx. 600 V/60A//0,463 kW each. Their gates are controlled by OMRON EE-SB5 reflective optical microsensors managing four steps per rotation. It is the simplest supervision system possible. My four motors also function well when powered by a 230 VAC/1,5 kW frequency converter.