希望可以講解Jacobian Matrix的原理,和 i ⨯ j ⨯ k 為何可理解為一個單位的Volume
@cylau05 ай бұрын
Suppose (p,q,r) could be transformed from Euclid Coordinate System (x,y,z), such that p = f_p(x,y,z) q = f_q(x,y,z) r = f_q(x,y,z) Then dp = δp/δx * dx + δp/δy * dy + δp/δz * dz dq = δq/δx * dx + δq/δy * dy + δq/δz * dz dr = δr/δx * dx + δr/δy * dy + δr/δz * dz So if we consider the value dp ⨯ dq ⨯ dr, then from the above formula we can see dp δp/δx δp/δy δp/δz dx [ dq ] = [ δq/δx δq/δy δq/δz ] * [ dy ] dr δr/δx δr/δy δr/δz dz So we can see to get dp ⨯ dq ⨯ dr, it is just equal to Jacobian matrix δp/δx δp/δy δp/δz [ δq/δx δq/δy δq/δz ] * ( dx ⨯ dy ⨯ dz) δr/δx δr/δy δr/δz
Suppose (p,q,r) could be transformed from Euclid Coordinate System (x,y,z), such that p = f_p(x,y,z) q = f_q(x,y,z) r = f_q(x,y,z) Then dp = δp/δx * dx + δp/δy * dy + δp/δz * dz dq = δq/δx * dx + δq/δy * dy + δq/δz * dz dr = δr/δx * dx + δr/δy * dy + δr/δz * dz So if we consider the value dp ⨯ dq ⨯ dr, then from the above formula we can see dp δp/δx δp/δy δp/δz dx [ dq ] = [ δq/δx δq/δy δq/δz ] * [ dy ] dr δr/δx δr/δy δr/δz dz So we can see to get dp ⨯ dq ⨯ dr, it is just equal to Jacobian matrix δp/δx δp/δy δp/δz [ δq/δx δq/δy δq/δz ] * ( dx ⨯ dy ⨯ dz) δr/δx δr/δy δr/δz
我对这则的讲解并不是很满意,这种空间概念在脑中其实是很难建立的,我想了很久,直到我想到(拿到)了地球仪。看着地球仪的经线和纬线的变化,就很容易理解ρ^2sinθ dρ dθ dφ了。:不同经线所在的圆是定长的,取决于ρ,不同纬线所在的圆是不定长的,取决于ρsinθ。一段小的经度弧,就是ρdθ。一段小的纬度弧,就是ρsinθdφ。体积小量=小经度弧 x 小纬度弧 x dρ = ρdθ x ρsinθdφ x dρ = ρ^2sinθdρdθdφ