Super easy... Converted cos^4x in (1-sin^2x)^2 then sin^2x = t Solve the quadratic, and then put sin^2x =2/5 value in all options Got option A and B in 1 min.
@quintonjazz72045 ай бұрын
I did it also.
@kushagramishra17292 жыл бұрын
Sir I solved this by converting all terms to sin and then made a quadratic.
@ghostunstoppable62972 жыл бұрын
Yes and I also solved the same way but converting it into cos
@aradhyasingh40432 жыл бұрын
same
@Zx-cl5dr2 жыл бұрын
Me too
@Vikash-mb9zi2 жыл бұрын
Same bro
@Vikash-mb9zi2 жыл бұрын
We will get cos²x = 3/5 by this method and on solving further we will get sin²x and then tan
@udaymaheshwari17022 жыл бұрын
another method: consider x=(sin a) power 2 and y=(cos a) power 2 and solve by ellipse and line's intersection point
@qbish_4 ай бұрын
yes ,it works but why does it make sense , we have only one variable,converting it would look like X^2/(2/5) +Y^2/(3/5) = 1 ,giving X=+root(2/5),Y=+root(3/5) ,but why does it make sense
@AimzIIT2 жыл бұрын
Sir it can be easily solved by Titu's Lemma we know (x1)²/A+(x2)²/B >=[x1+x2]²/A+B And equality exists iff (X1)/A = =X2/B So this equation has equality and satisfies Titu lemma
@rishavbagri42112 жыл бұрын
Ashish sir student?
@AimzIIT2 жыл бұрын
@@rishavbagri4211 no i was , A4S now i am Pwian
@JeeNeetMemes2 жыл бұрын
The easiest approach in this question is to divide the whole equation by cos4x and converting all terms to tanx and then solving the equation
@aashishkumar96582 жыл бұрын
Yess.. Or you can just check the options by making triangles😂
@studywithsourodeep2 жыл бұрын
You are right 🙏
@krishgarg28062 жыл бұрын
@Mathhatter true, I did it similarly by converting sin^4x = (1-cos^2x)^2
@devcoachingclasses12 жыл бұрын
Yes and choose the option according to given value
@mr.singhbist2 жыл бұрын
the easisest approach to this problem is by using titus inequality
@parthmadaan33992 жыл бұрын
Sir I have done this problem 3rd time and sir jab bhi karta hu maza aata h
@abvd92840 Жыл бұрын
14:08 I'm from 10th class and I solved this question, just simply divide both sides by cos⁴X, convert all terms into forms of tan²X and tan⁴x you'll get a quadratic equation with equal roots.
@mvppiro Жыл бұрын
Bhai koi badi baat nahi h ye to 10th ka hi question h
@abvd92840 Жыл бұрын
@@mvppiro haan bhai. Test ka easiest question hoga probably
@abhirupkundu2778 Жыл бұрын
gadha hain kya? Ye jee advanced ka question hain. Par iska easier method lagaya tune. Sir ke tarah kar leta to maan jata @@abvd92840
@khuranapranshu5 ай бұрын
Kaise kiya bro details dena
@div_072 жыл бұрын
Can easily be solved by substituting cos²x with 1-sin²x. It becomes a quadratic in sin²x.
@MdWasim-mj9wj2 жыл бұрын
Yeah it's easy one
@shiwoshiwoismyactualname2 жыл бұрын
Yea mains '22 had harder questions than this adv question
@akshatagarwal63082 жыл бұрын
Yeah usse easily ho rha hai, typical approach hai ye
@parthdanve6511 Жыл бұрын
Easiest method is to take cos^4x common to make tan^4x on LHS and send to other side as sec^4x. Then write sec^4x as (tan^2x+1)^2. We get biquadratic in tanx or quadratic in tan^2x using this method. After that just substitute values and check for tan^2x. Do the same method for the equation options and substitute correct value of tan^2x to check whether its true
@mriduldoesminecraft688211 ай бұрын
simple approach write sin^4x as (sin^2x)^2=(1-cos^2x) ^2 then obtain a quadratic in cos^2x and cos^2x=3/5 then basic trigo needed for giving answer a) and b)
@befactfull52511 ай бұрын
Yes
@befactfull52511 ай бұрын
In which class you are
@priyankachhajer17022 жыл бұрын
One of the best mathematics teacher.. 🙏🙏🤜
@Alexander_1212-j1v2 жыл бұрын
By quadratic equation this is easy to solve but by your method we learnt another way to solve such question. ...👍
@rushikeshpale Жыл бұрын
Even I don't know how to solve this problem.. mene dekha toh mene bola ye kya he ye
@Alexander_1212-j1v Жыл бұрын
@@rushikeshpale are u jee aspirant
@rushikeshpale Жыл бұрын
@@Alexander_1212-j1v you will amaze but I really don't know which entrance exam should I give. And just 5 months remain for boards it feels like I am dumbest person now😅
@Alexander_1212-j1v Жыл бұрын
@@rushikeshpale don't worry u have still a decent time to crack any exam
@Alexander_1212-j1v Жыл бұрын
Btw where are u from.
@anonymous-jg3ec Жыл бұрын
I think the easiest way to solve this question is by using options (if given)
@ranistanly5340 Жыл бұрын
We can write 1/5 as 1/5*(sin²x+cos²x)² youll get a perfect square on putting it to left hand side
@ritamroy57582 жыл бұрын
Sir u upload good vdos. I appreciate u. But this vdo is already uploaded in Math Booster channel. But here putting sin^2x = a and cos^2x = 1 - a, we get the solution very fast.
@Lalan0_0 Жыл бұрын
Almost an oral question for those who knows titu's lemma 💀
@AyushRajpurkar7 ай бұрын
Bhai aur aise helpful theorems, concepts, Lammas ke naam batao pls
@debadritoduttaedits15 күн бұрын
Exactly bruh😂😂 this would be the easiest problem if it appeared in ioqm
@deeppandey56542 жыл бұрын
Iam in 10nth and yet solved it , it means it is easy question..
@notayush20643 ай бұрын
Yes it is
@vinayak98282 жыл бұрын
Divide the entire equation by cos and then write sec ^2 as 1 + tan ^2 and then make quadratic in tan^2 put tan^2 = u and solve
@JeeNeetMemes2 жыл бұрын
Yes good 👍
@arpitagarwal822 жыл бұрын
sin square x = y and cos square x = z substitute karke original eq becomes 15y^2 + 10z^2 = 6 and another identity eq y + z =1 ..... solve both equations. Eleminating z will give an easy eq (5y-2)^2 = 0. hence sin^2x = 2/5....
@RajThakkar2482 жыл бұрын
I tried this method. It's time consuming but very effective!
@udaygoyal55692 жыл бұрын
Yes bro I also did it in same way😆
@arpitagarwal822 жыл бұрын
@@RajThakkar248 Not very long... Ab itna to karna hi padega bhai....
@anandchaurasia59922 жыл бұрын
Sir kuchh jyada dimag laga liye hai 1-take l.c.m and express in a simple equation by cross multiply 2-break cos^4x into sin 3-then let sin^2x=a 4-solve the quadratic equation by spliting method 5- then we get value of sin^2x 6-then find p,b,h. Then we can find all value 7-bhannat sir ka koi aur que try karo😃😃😃😃
@shreyasidubey7042 Жыл бұрын
Sir ,I have done it by using simple quadratic equation For it I have converted one of them in such way that it become a function in Terms of sin or cos then after by using quadratic I have done it ........ Thanku for such interesting problems......🎉
@9anishantgarg1842 ай бұрын
divide both sides by cos^4 x and create a quadratic by taking tan^2 x = y and make a quadratic..options will be managed in two steps
@pepethe1232 жыл бұрын
I am a 10th grader and did this que only because of my excellent teacher. Thanks for uploading such helpful question.
@Tryha4d2 жыл бұрын
I'm also in 10th but couldn't solve it can you tell me which type of coaching you go
@arjunphaneesh60512 жыл бұрын
Even I'm 10th I felt that this was very easy
@poonammittal46032 жыл бұрын
apne trigno and quadratic gb sir se kiya na?
@pushkardev30902 жыл бұрын
good job bro
@mamtaggupta Жыл бұрын
I also did it
@harshitghotiya Жыл бұрын
Easiest way is to use cauchy swartz angel form or titu's lemma.. just one liner solution
@Maths_fun_by_himanshu9 ай бұрын
Ye kis chapter mai padhna h?
@cuteff88112 жыл бұрын
Full respect
@NIRAjKUMARबिहार2 жыл бұрын
I am already solved this question sir Because doubt question is my favorite
@meetkathrecha14482 жыл бұрын
Sir , please make video on adv 2022 matrix problem I really excited, how you treat that problem . ❤️🔥🔥🔥
@yuvrajsaini3369 Жыл бұрын
it would get solved in seconds if we would have used titu's lemma , but thank you aman for giving us a fundamental approach to solve this problem . It helped in clearing some basic concepts
@thetenniszone123 Жыл бұрын
could you tell me how to solive it using titu's lemma?
@rajanbal5316 Жыл бұрын
We can do this by writing above equation as sin^4x/(5-3) + cos^4x/(5-2) = 1/5 taking 5 common from the denominator of both sides sin^4x/(1-3/5) + cos^4x/(1-2/5) = 1 now compare each part of the above equation with ( sin^2x + cos^2x = 1 ) we know that sin^4x/(1-3/5) = sin^2x and cos^4x/(1-2/5) = cos^2x therefore, sin^2x = 1-3/5 = 2/5 and cos^2x = 1-2/5 = 3/5 so tan^2x = 2/5
@rajvishwakarma758 Жыл бұрын
Cauchy Schwartz inequality can also be used.
@ahornypotato539711 ай бұрын
how?
@srijansinha22182 жыл бұрын
Simple take lcm and substitute (cos^2x)^2 by (1-sin^2x)^ Further it can be easily done
@wantedgamer22352 жыл бұрын
Sir Apne Dil Jeet Liya ❤️❤️🙏🙏 Kya Shandar Tarike Se solv Kara Apne
@deveshjoshi54152 жыл бұрын
I have easy soln Let sin²x= t It form quadratic and at end we get Sin²x=2/5 and cos²x=3/5 and find whatever given so option get a and d
@i.not_iman11 ай бұрын
im in 10th grade...i solved it by turning it into a quadratic equation in one variable i.e. by supposing Sin²x = y!! i don't find why the question is challenging!? i think most of my friends in 10th can solve it as well.. 😅 The way you solved it is critical tho! :)
@nibaranghosh94802 жыл бұрын
Sir, I solved this by converting all terms to cos and then made a quadratic. I found only option (a) tan²x = 2/3. And in second answer I saw of yours solution.
@ansafmustafa58632 жыл бұрын
Bhai second answer ke liye jo tumhari quad se sinx^2 aur cos square ki value aa rahi hai uska power 4 karke divide option wale no. be se karo
@milianxhighlights Жыл бұрын
Agar ham jyada na soche aur isko quadratic banake solve kare jaha sin^2x = t put kare toh easily saare jawab mil jayenge
@_dhiru_45072 жыл бұрын
thanks sir aap hamare liye aese hi imp question laya karo and we love you and your`s maths
@karthiktatikonda85836 ай бұрын
take lcm and then divide by cos^4x and use the idenitiy sec^2x = 1+ tan^2x , you will get tan^2 x as 2/3 then take tanx = +-underoot2/3 draw the triangle then youll get sin x = root2/root5 and cosx = root3/root5 after simplifying we get option a and b as correct ..
@neonftw9658 Жыл бұрын
Dude iit is so easyyy 😢😊😊, you guys are lucky , Damnnn those who say JEE is tough. Maybe science is toughhhh
@dineshnahar85572 жыл бұрын
Too easy question I solved it in class 10
@atharvajoshi6338 Жыл бұрын
Ya so easy I solved in kindergarten
@sohammohanty58752 жыл бұрын
Sir u're heavily underrated 🥲
@shrawon36052 жыл бұрын
But the amount of our time he wastes is huge So he's rightly rated
@IamHINDU.JaiSiyaRam2 жыл бұрын
still you watch him
@mcplayervineet4461 Жыл бұрын
Araay bhai Jo loog srif paiso kaay pichaay bhaag taay hai unka yahi haal hota hai
@aimbotarmy6342 Жыл бұрын
@@mcplayervineet4461 matlab??
@abhinavshyam9564 Жыл бұрын
Sir sabko cos2x mein convert karke cos2x mein quadratic solve kar sakte hai.. bohot easily ho jata hai
@twinopedia76526 ай бұрын
sir we can write 1 as sin^2x+cos^2x and then it can be solved very easily
@thezerothandtheinfinite Жыл бұрын
First check the options: (tanx)^2= 2/3 (tanx)^2 +1= 1/(cosx)^2= 5/3 (cosx)^2=3/5 and (sinx)^2= 2/5 (cosx)^4= 9/25 and (sinx)^4= 4/25 substitute in equation, you'll get 1/5=1/5, which is true, so option a is correct and you now have (sinx)^4 and (cosx)^4, so just square and substitute in the remaining two options
@Sd4ss2 жыл бұрын
Sir great respect🙏🏻🙏🏻👑
@DeepeshSonkar-b1q Жыл бұрын
write sin^4xas sin^2x(1-cos^x) and cos^4x as cos^2x(1-sin^2x) take them on one side since sin^2x and cos^2x can only be zreo if they are multipled by zero , hence we directly get sin^2x as 2/5
@moses78602 жыл бұрын
Put sin²x =a and cos²x=b , then a+b=1. Solve then for a and b, so 3 minutes maximum
@mr.technicalverma75062 жыл бұрын
Kya dialogue maarte ho yaar aap 😂👏👏maja aa jaata hai
@nirmalupadhyay45482 жыл бұрын
SIR I HAD SOLVED THIS QUESTION BY CHECKING YHE OPTIONS .............. 🙏🙏🙏🙏🙏🙏🙏🙏🙏🙏
@cataminz93311 ай бұрын
write b as a+b - a and then take lcm such that a is common in both sinusoidal terms and convert the given equation into quadratic by using a² - b² identity
@rajneeshyadav40012 жыл бұрын
Mja agya sir🙏🏻🙏🏻
@Unknowngaming075 ай бұрын
Best method will be putting 1 =sin²x+cos²x then saare terms ko left me lao and sin²x nd cos²x common leke easily hojayega
@lokendrasingh28105 ай бұрын
Let sin²x=a,cos²x=b,so a+b=1 and a=1-b a²/2+b²/3=1/5 3a²+2b²=6/5 3(1-b)²+2b²=6/5 3(1+b²-2b)+2b²=6/5 3+3b²-6b+2b²=6/5 5b²-6b+9/5=0 25b²-30b+9=0 25b²-15b-15b+9=0 5b(5b-3)-3(5b-3)=0 (5b-3)²=0 b=3/5 a=2/5
@adityashukla3742 Жыл бұрын
The Cauchy - Schwartz Identity seized the game in seconds!!
@cataminz93311 ай бұрын
how?
@AdityaKumar-gv4dj2 жыл бұрын
Sir apne bohot complex bana diya iss chij ko, isko general approach se bhi banaya jaa saktha hai.
@mathomagics27126 ай бұрын
easiest approach is to convert the 1 in RHS to sin^2x + cos^2x then solve in 2 line
@satviktripathii Жыл бұрын
easiest method is to convert cos x into sin x and solve the equation to get sinx..convert to tanx .......for second part just put the value of sin x & cos x obtained to get 1/125
@eihridtxf-hl7wx Жыл бұрын
It seemed easy sir. Sab ko cos me lake karne se bhut jaldi bn gaya question
@anjalidwivedi2057 Жыл бұрын
I am in class 10 I'll give boards after 9 days and I solved this one by using quadratic equation and basic trigonometry.Took me just 1 min.... This was easy....cant believe these type of questions are ed in JEE
@Arya-o7j Жыл бұрын
You are my competition
@ayushawasthi072 жыл бұрын
It can be done by using cauchy schwaz inequality in 2 lines
@gauri5926 Жыл бұрын
Not by cauchy Schwartz inequality ,,,,,,but it can be done by Titu's lemma
@sirak_s_nt Жыл бұрын
@@gauri5926 Titu's lemma is just a special case of Cauchy only
@harshitdodani61802 жыл бұрын
Sir you are amazing
@Manish_babu-ft4up3 ай бұрын
Sir , on solving tan^x=a/b now if we see tan^2x is equi🤔valent to sin^4/2+cos^4/3 so if we write (tan^2)^3 which is directly equal to 1/125
@AbheeshnaDey9 ай бұрын
Dividing the whole equation by cos^4x if we proceed further then we get the value of tan^2x. Easy problem😊😊😊
@kavyanshtyagi25632 жыл бұрын
sir aise hi mast mast maths ke saval lekar ayiea
@aashutoshpathak8973 Жыл бұрын
I think TITU's lemma is a much better approach for such positive real equality problems.
@TOOFAANFACTS Жыл бұрын
Bhai mene bhi Titus lemma se kiya equality bala
@adityarawat39682 жыл бұрын
Sir i am in class 10th and solved this question by converting cos⁴x in termas of sinx....and made all thing quadratic...and easily solved
@rajaspirant544 Жыл бұрын
legend solved
@aritrabarman8763 Жыл бұрын
Sir can u plz bring chapterwise jee main maths solutions of jan attempt??
@Allinonegaming-r2y2 жыл бұрын
Mera 1st optiont aa gaya tan square x =2/3 maine solve kiya Titu lemma / Engel form sedrakyan inequality
@himesh6707 Жыл бұрын
Sir mai 10th mai hu aur mujhe ek question mai doubt hai Q- sinθ + 2cosθ=1 then we have to prove 2sinθ-cosθ=±2 My steps to solve the question : Given, --> Sinθ+2cosθ=1 or 2cosθ=1-sinθ Dividing cosθ both sides 2 = 1/cosθ - sinθ/cosθ 2 = secθ - tanθ .... (1) As, 2 = secθ - tanθ Therefore, by the identity ( sec²θ - tan²θ=1) secθ + tanθ = 1/2 .... (2) Adding (1) and (2) We get, secθ = 5/4 = HYPOTENUSE/ BASE Let, H=5x and B = 4x By Pythagorean triplet, Perpendicular will be 3x Therefore, Sinθ = P/H = 3x/5x = 3/5 Cosθ = B/H = 4x/5x = 4/5 We have to prove - 2sinθ - cosθ= ±2 Taking LHS, = 2(3/5) - (4/5) { sinθ = 3/5 and cosθ = 4/5) = 6/5 - 4/5 = 2/5 But, 2/5 ≠ 2 Sir please tell me what mistake I did here.
@theprakhar733 Жыл бұрын
sin θ+2cos θ=1 (given) Now sq both sides - (sin θ+ 2cos θ)² =1 sin² θ+ 4 cos² θ + 4sinθcosθ=1 sin² θ + 4(1-sin² θ) +4sinθcosθ=1 sin² θ + 4 - 4sin² θ +4sinθcosθ=1 Now - Taking sin² θ to RHS 4- 4sin² θ+4sinθcosθ=1- sin² θ So: 4-4sin² θ+4sinθcosθ=cos² θ Now taking all terms to LHS except 4 - 4=4sin² θ + cos² θ- 4sinθcosθ So we get - 4= (2sinθ - cos θ) ² Now sq root on both sides - 2sinθ - cos θ=+-2 Hence Proved Hope you understood
@janu17422 жыл бұрын
I am in 10th class .I loved this question .and I already solved some these type of question.
@vitthalrastogi282911 ай бұрын
किस्मत सबको मौका देती है किस्मत सबको मौका देती है और मेहनत सबको चौका देती है।❤❤
@highermathematicsbya.p.t22932 жыл бұрын
Sabse easy approach by titu,s inequality
@AdityaKumar-xo3ot Жыл бұрын
a²/x + b²/y >= (a+b)²/x+y ; Equality holds when a/x=b/y Use this inequality and get your answer within 30 seconds
@Normie4lyf Жыл бұрын
cs inequality ki baat karra tu
@AdityaKumar-xo3ot Жыл бұрын
@@Normie4lyf ha cauchy schwarz inequality
@befactfull52511 ай бұрын
Sir I have solved this by options within seconds and after fiunding valve of cos2x and sin2x as 3/5 and 2/5 respectively
@anmoltyagi710711 ай бұрын
This can easily be solved by using titu's lemma
@Bittu_Kumar333 Жыл бұрын
I am in 10th; going to give boards after 10 days. I have solved this question just by using quadratic equation and simple trigo. Thank you sir!
@maneeshsk4375 Жыл бұрын
@@tanmaydhule7706 it's not about solving this particular problem. This is actually a very easy one can be solved using multiple methods. The thing he wanted to convey in the video was the identity used while framing the question.
@ashaydwivedi420 Жыл бұрын
@@maneeshsk4375its okay yaar 10th me to mujhe sec2 x = 1 + tan2 x bhi yaad nahi rehta rha
@ajal30252 жыл бұрын
Sir again a sinple question bs quadratic bnakr values put krni h Plz increase the level sir
@abhirajsrivastava60002 жыл бұрын
Sir jee aapka idea great
@challenge83462 жыл бұрын
Sir we want you daily upload min one question of Jee Advance.
@shahidpervaiz5216 Жыл бұрын
Simple We can write as 👇 15*((Sinx)^2)^2 + 10* ((Cosx)^2)^2 = 6 Substitute (Cosx)^2 = 1 - (Sinx)^2 Once simplified we get 25*(Sinx)^4 - 20*(Sinx)^2 + 4 = 0 Let p = (Sinx)^2 Then equation becomes 25*p^2 - 20*p + 4 = 0 Once simplified it gives Sinx = SQR (2/5) So x = arc Sin (2/5) 🥳👍🥳👍🥳👍
@tapasbhakta9944 Жыл бұрын
I just started solving by doing L. C. M... And I realised that both option "a" and "c" are right..
@itxx__vivek2 жыл бұрын
Sir u are best in maths
@maddenom Жыл бұрын
I think using AM GM inequality would also do the trick...
@Fsinthechat10 Жыл бұрын
I actually managed to solve this in 5 min by converting the equation into a quadratic equation
@DivyanshSingh-mp5uh Жыл бұрын
Sir you can reduce the steps it will more easy to do this by taking cos4x and sin4x as 1 and then by dividing it by a/b cos 4x and will neglect the negative sin as the tan may lie in any of quadrant? Is this method right pls Tell 😃
@rameshn282-u7q Жыл бұрын
integral of f(x) = f(x) then f(x)=? f(x) is not e power x. please tell sir
@S2FunReacts22 Жыл бұрын
Sir I solve this using Titu's Lemna And I got Correct option within 4 min ..
@anushkamittal68052 жыл бұрын
You can easily solve it by forming a quadratic equation (by the way I am in 10th and any good student of class 10th can solve this)
@pepethe1232 жыл бұрын
What I did is- first of all I took LCM Than converted whole LHS into sin terms but putting on identity than I got 5sin⁴x-4sin²x=-4/5 than I assumed sin²x=t and make a quadratic and found the value of t by applying quadratic/shree dhar Acharya formula and found sin²x and so on....
@boxoftin2 жыл бұрын
I did exactly the same
@atharvsharma1866 Жыл бұрын
@@boxoftin took like 2 mins.
@utkarshgangwar2120 Жыл бұрын
Divide the whole by cos^4x
@reettwikpati8654 Жыл бұрын
Nishant Vora sir is the God of Mathematics ❤
@kiran6178 Жыл бұрын
Yes
@pranavpathak1459 Жыл бұрын
We know sin^2x+cos^2x=1 So in this question comparing coefficients is the easiest way to solve.No need of applying formula this much.Simplest way here is coefficients comparing.
@dragonslayer73642 жыл бұрын
Sir aapne Jo ye question ka example karwaya na waisa hi same question ek 10 ki maths ki book 15spq arihant mein hai pg no 17 question no 19 for 2020
@purnaroy460 Жыл бұрын
Very good explanation sir ❤
@Aditya_Mishra-ASKM Жыл бұрын
Sir I solved it on the knowledge of class 10 trignometery
@enthusiastic1232 жыл бұрын
Sir good explanation 😊
@sairevanth261610 ай бұрын
Another method: write [sin^4x]/2 + [cos^4x]/3 = 1/5 into 5[sin^4x]/2 + 5[cos^4x]/3 = 1. compare this equation with sin^2x + cos^2x = 1. rest is easy.
@mathology568 Жыл бұрын
Sir I solved by sin2x+cos2x=1 and substituted sin2x as t2
@Mathalay Жыл бұрын
5 +4-3 = 5+1 = 6, here operation was not done from left to right, but result is the same. I opine, the answer should be 1. Operation 2(3) should be performed before division.
@kavyaarora13482 жыл бұрын
WE CAN ALSO TRY BY PUTTING SIN2 X = 1- COS2 X THEN AFTER SIMPLICATION PUT COS 2 X =T