1 plus the product of four consecutive integers

  Рет қаралды 7,901

Prime Newtons

Prime Newtons

Күн бұрын

Пікірлер: 55
@saba6601
@saba6601 2 күн бұрын
Prime Newton, you are a brilliant Mathematician.Regards Dr Sabapathy (Mathematician, Singapore 🇸🇬)
@bvenable78
@bvenable78 2 күн бұрын
I love your grin at the end of each solution. Thanks for sharing your joy with us. 💙
@BartBuzz
@BartBuzz 2 күн бұрын
Now that's pretty neat! The "difference of squares" is how I taught my granddaughter how to compute calculations like (60^2 - 59^2) in her head.
@Akenfelds1
@Akenfelds1 2 күн бұрын
I saw the problem, I tried to prove it. I came close but never made it. Then I watched the full video and sat there with my mouth wide open. Beautifually done!
@perpetgholl5742
@perpetgholl5742 2 күн бұрын
very few smart channel on youtube. you're one of them. thanks for sharing.
@SidneiMV
@SidneiMV 2 күн бұрын
1 + (k² + 3k + 2)(k² + 3k) k² + 3k = u 1 + u(u + 2) = u² + 2u + 1 = (u + 1)² (u + 1)² is a perfect square so (k² + 3k + 1)² is also a perfect square
@saba6601
@saba6601 2 күн бұрын
@SidneiMV Very nice approach 👍 Regards Dr Sabapathy (Mathematician, Singapore 🇸🇬)
@knupug
@knupug 2 күн бұрын
Really liked you solution. Very elegant.
@ahmedrafea8542
@ahmedrafea8542 Күн бұрын
As always, you continue to amaze me with your talent, great choice of problems, and wonderful style of explaining things. Thanks very much and keep up the wonderful work.
@NoirKnight-uy2ce
@NoirKnight-uy2ce 2 күн бұрын
Although I am not taking the class required for that, I enjoyed the lesson I learned from here. NEVER STOP LEARNING!
@keithhigh7773
@keithhigh7773 23 сағат бұрын
Brit here. Excellent, thanks. I managed to follow your workings, even when you took a shortcut! And you are the first person to explain the Capital pi in a manner l could follow. I shall recommend your channel to my grandchildren. Not sure how food technology and mathematics go together, but at the end of the day, everything can be explained by maths.
@PrimeNewtons
@PrimeNewtons 19 сағат бұрын
It all works out in the end.
@chrisbarrington108
@chrisbarrington108 2 күн бұрын
Thank you. Nice presentation. You have a very reassuring way of teaching.… A more general version of the same problem is: Prove that the product of four positive integers in arithmetic progression with common difference d plus a constant (d^4) is a perfect square.
@satyapalsingh4429
@satyapalsingh4429 Күн бұрын
You are a great mathematician .Keep it up your wonderful work !!!
@PrimeNewtons
@PrimeNewtons 13 сағат бұрын
You're very kind
@aconite_claw
@aconite_claw 2 күн бұрын
Your lullabies like voice and mathematical acumen make maths story like. Quite appreciated. I like it a lot.
@anandarunakumar6819
@anandarunakumar6819 Күн бұрын
Nice problem. After seeing the symmetric form of polynomial, I was tempted to use Pascal's triangle to simplify. The expression k^4+6k^3+11k^2+6k+1 = k^4+4k^3+6k^2+4k+1 + 2(k)(k^2+2k+1)+ k^2 , which reduces to a perfect square: ((k+1)^2+k)^2. Thanks for this problem, discovered a nice relation of Pascal's triangle of alternate rows. Take 3 alternate rows of Pascal's triangle, the sum of coefficients of 1st and third row, and add twice the sum of middle row to get a perfect square!
@jpl569
@jpl569 Сағат бұрын
Brilliant ! Funny enough, I found a solution slightly longer, grouping the k in a different way…: X = 1 + k (k+3) (k+1) (k+2) = 1 + [(k + 3/2)^2 - 9/4] [(k + 3/2)^2 - 1/4] Fortunately, this leads to : X = 1 + (k^2 + 3k) (k^2 + 3k + 2), and the rest is the same. Strange to see that keeping the symmetry around k + 3/2 is less efficient than your grouping ! Thanks for your interesting videos ! 🙂
@riccardofroz
@riccardofroz 2 күн бұрын
That was a pretty elegant solution. I got a more convoluted one as I expanded the whole thing: 1+k(k+1)(k+2)(k+3) 1+(k^2+k)(k^2+5k+6) 1+k^4+5k^3+6k^2+k^3+5k^2+6k k^4+6k^3+11k^2+6k+1 Extract a quartic binomial: (k^4+4k^3+6k^2+4k+1)+2k^3+5k^2+2k (k+1)^4+2k^3+5k^2+2k (k+1)^4+k(2k^2+5k+2) Extract a square binomial from the right term: (k+1)^4+2k(k^2+2k+1)+k^2 (k+1)^4+2k(k+1)^2+k^2 The previous is a square binomial with first term (k+1)^2 and second term k. ((k+1)^2+k)^2
@giuseppemalaguti435
@giuseppemalaguti435 2 күн бұрын
Complimenti,ho avuto la stessa idea
@HomePersonal-yc9rx
@HomePersonal-yc9rx 2 күн бұрын
What an amazing smile and intro ❤🎉
@twlson49
@twlson49 2 күн бұрын
Excellent explanation. Kudos to you.
@raymondseligman7003
@raymondseligman7003 2 күн бұрын
I have asked a number of times and I don’t want to be a pain in the butt but do you teach, where did you get your incredible mathematical knowledge, and where did you go to school? Your videos are absolutely brilliant. Every time one pops up I think there’s no way I could do it or understand it but by the time you’re done I do understand it. My compliments.
@MrConverse
@MrConverse Күн бұрын
0:49, maybe I’m being a little picky here but you can’t have a product of terms. Things that are added together are terms. Things that are multiplied together are factors. So we have a product of factors here. Hope it helps. Nice vid!
@PrimeNewtons
@PrimeNewtons Күн бұрын
You're correct
@henryubah5031
@henryubah5031 8 сағат бұрын
This is brilliant
@RoyPierce-fb8mt
@RoyPierce-fb8mt 2 күн бұрын
>>> from math import factorial as fc, sqrt as rt >>> 1 + fc(4) 25 >>> 1 + fc(8) / fc(4) 1681.0 >>> rt(1681) 41.0 >>>
@vaibhav_._.
@vaibhav_._. 2 күн бұрын
Hello sir ! Please make one more video on solving questions of JEE ADVANCE. . Pleasee 🌸
@robertpearce8394
@robertpearce8394 2 күн бұрын
Neat
@ernestdecsi5913
@ernestdecsi5913 2 күн бұрын
Ez valóban egyszerű és nagyszerű!
@fahadbinferoz6758
@fahadbinferoz6758 2 күн бұрын
When are you going to upload the previous video correction video?
@PrimeNewtons
@PrimeNewtons 2 күн бұрын
Tomorrow
@xbz24
@xbz24 Күн бұрын
Where do I buy those chalkboard
@maths01n
@maths01n 2 күн бұрын
Learnt ❤
@makehimobsessedwithyou6412
@makehimobsessedwithyou6412 2 күн бұрын
you are so clever
@mathunt1130
@mathunt1130 2 күн бұрын
There might be a simplistic way. You know that the expression will be a quartic in k,and moreover a square of a quadratic, so write the quadratic as ak^2+bk+c. Now square and compare coefficients to find the quadratic. It's not as elegant as the solution provided.
@frreinov
@frreinov 2 күн бұрын
Great. I tried it by myself but just couldn't come up with the way you went.
@ricardoguzman5014
@ricardoguzman5014 2 күн бұрын
Elegant manipulation. My solution is as follows: show k(k+1)(k+2)(k+3)+1 is a square. let k+1=a and let k+2=b. Then it can be rewritten as such: (a-1)a x b(b+1) +1= ab(a-1)(b+1)+1= ab(ab+a-b-1)+1; now notice the parenthesis (ab+a-b-1); a is 1 less than b, so a-b in the parenthesis is -1, thus it becomes: ab(ab-1-1)+1= ab(ab-2) +1 = a²b² -2ab +1, which factors as (ab-1)²; thus k(k+1)(k+2)(k+3) +1 is a square.
@AtharvaKhadilkar-f4j
@AtharvaKhadilkar-f4j Күн бұрын
Can you solve JEE advanced pyqs
@domanicmarcus2176
@domanicmarcus2176 2 күн бұрын
As a first-year undergraduate, I am taking proof writing for my major (Pure Mathematics). Can you please make videos on all types of proof writing? Thank you
@sauzerfenicedinanto
@sauzerfenicedinanto 2 күн бұрын
If n is a natural number then the product can be written as n(n+1)(n+2)(n+3)=[n(n+3)][(n+1)(n+2)]=[n^2+3n][n^2+3n+2]=[(n^2+3n+1)-1][(n^2+3n+1)+1]= (n^2+3n+1)^2-1 if we add 1 the we obtain always a perfect square, precisely (n^2+3n+1)^2.
@MrGeorge1896
@MrGeorge1896 2 күн бұрын
Perf.Sq. = 1 + k (k + 1) (k + 2) (k + 3) = k⁴ + 6k³ + 11k² + 6k + 1 = k² [ ( k² + 1/k² ) + 6 ( k + 1/k ) + 11 ] = k² [ ( k + 1/k )² + 6 ( k + 1/k ) + 9 ] = k² [ ( k + 1/k ) + 3 ] ² = [ k² + 1 + 3k ] ²
@raghvendrasingh1289
@raghvendrasingh1289 2 күн бұрын
❤ Generalization - if p , q , r and s are in AP then pqrs+d^4 is always a perfect square where d is common difference proof - let p = a-3c , q = a-c , r = a+c , s = a+3c then d = 2c pqrs+d^4 = (a^-9c^2)(a^2-c^2)+16c^4 = a^4- 10a^2c^2+25c^4 = (a^-5c^2)^2
@StudyOnly-nn1xb
@StudyOnly-nn1xb 2 күн бұрын
K³-k(k+2)=k⁴+2k³-k²+2k (k²+k)²-2(k²+k)+1-1 (K²+k+1)²-1 +1 (K²+k+1)²
@HrishikeshRaj-qv6lr
@HrishikeshRaj-qv6lr 2 күн бұрын
Indians assemble here 🇮🇳❤
@graf_paper
@graf_paper 2 күн бұрын
1+ n(n+1)(n+2)(n+3) = (n + (n+1)²)² Very nice!!!
@robertveith6383
@robertveith6383 2 күн бұрын
Show the connecting steps in between the first line and the last line.
@Meowcat-kr6tc
@Meowcat-kr6tc Күн бұрын
@@robertveith6383 They're just noting the general idea the problem suggests
@mehdizangiabadi-iw6tn
@mehdizangiabadi-iw6tn Сағат бұрын
1≠i
@Kakarot-kr
@Kakarot-kr 2 күн бұрын
Sir pls do this Let f(x)=lim n infty n^ n (x+n)(x+ n 2 )***(x+ n n ) n!(x ^ 2 + n ^ 2)(x ^ 2 + (n ^ 2)/4) ***(x^ 2 + n^ 2 n^ 2 ) ^ x n , for all x > 0 Then (A) f(1/2) >= f(1) (B) f(1/3) = (f' * (2))/(f(2)) Jee advanced 2016 shift 2
@Bertin-q3y
@Bertin-q3y 2 күн бұрын
-9
@josepherhardt164
@josepherhardt164 Күн бұрын
OMG. Somebody pinch me. My 70-something-year-old butt just figured this out using 50-year-old math. Maybe I should buy a lottery ticket. ||:-/
@0lympy
@0lympy 2 күн бұрын
Your square symbol isn't perfect :(
@mircoceccarelli6689
@mircoceccarelli6689 2 күн бұрын
👍 1 + k(k+1)(k+2)(k+3) = (k^2 + 3k + 1 )^2 = [ ( k + 1 )( k + 2 ) - 1 ]^2 = m^2 k € Z , m € Z 👍😁👋
@marioenriquegarduno9676
@marioenriquegarduno9676 Күн бұрын
El Memín penguin de las matemáticas 👍
Integrate 1/(1+x^3)
24:56
Prime Newtons
Рет қаралды 79 М.
Integrate x^-x dx
20:37
Prime Newtons
Рет қаралды 132 М.
Что-что Мурсдей говорит? 💭 #симбочка #симба #мурсдей
00:19
Find all natural numbers satissfying the equation
12:25
Prime Newtons
Рет қаралды 7 М.
Factoring Quadratics WITHOUT Guessing Product & Sum
20:01
JensenMath
Рет қаралды 293 М.
Math homework has kid in tears and both parents stumped. How to solve it?
8:12
n^4 + 3n^2 + 2 is never a perfect square
17:08
Prime Newtons
Рет қаралды 11 М.
Possible vs Reasonable
12:31
Prime Newtons
Рет қаралды 6 М.
Square-root of a matrix
13:51
Prime Newtons
Рет қаралды 37 М.
Solving a 'Harvard' University entrance exam
11:31
MindYourDecisions
Рет қаралды 502 М.
This open problem taught me what topology is
27:26
3Blue1Brown
Рет қаралды 658 М.
Harvard University Admission Entrance Interview Tricks
6:08
Learncommunolizer
Рет қаралды 432 М.
(n-1)!+1 = n^2
9:42
Prime Newtons
Рет қаралды 109 М.