18- Long Short Term Memory (LSTM) Networks Explained Easily

  Рет қаралды 56,445

Valerio Velardo - The Sound of AI

Valerio Velardo - The Sound of AI

Күн бұрын

Пікірлер: 111
@sholabenedict6125
@sholabenedict6125 8 ай бұрын
i honestly did not think i could understand this at my first watch, this is amazing.
@williamashbee1140
@williamashbee1140 4 жыл бұрын
Every time i've attempted to understand rnn and lstm my brain went to mush. you did the best job of explaining this of anyone i've seen. thanks.
@ValerioVelardoTheSoundofAI
@ValerioVelardoTheSoundofAI 4 жыл бұрын
Thank you William!
@sivadasanet7966
@sivadasanet7966 3 күн бұрын
Thank you so much sir for this wonderful class.
@jamesadler4859
@jamesadler4859 4 жыл бұрын
Wow. After a week of being confused by these things, watching videos, and reading articles, you just totally cleared my vision in this 30 minute video. THANK YOU!
@ValerioVelardoTheSoundofAI
@ValerioVelardoTheSoundofAI 4 жыл бұрын
Glad I could help James :)
@jewbaby9143
@jewbaby9143 3 жыл бұрын
This is an outstanding video. Great job! I really like that you include examples along with your explanation of the steps. That really helps, and you can't find that anywhere else :)
@danny_p466
@danny_p466 4 жыл бұрын
It's really impressive how you simplify such complex topics. Being a Udacity DL Nanodegree graduate some months ago, I came here to refresh these topics and your explanation was exactly on point! Will continue with your music generation series, thanks :)
@ValerioVelardoTheSoundofAI
@ValerioVelardoTheSoundofAI 4 жыл бұрын
Thank you Danny!
@Virtualexist
@Virtualexist Жыл бұрын
BEST SIMPLIFIED EXPLANATION OF LSTM. I WATCHED 7-8 VIDEOS BEFORE THIS. BUT UNDERSTOOD ENOUGH ONLY TO SAY HMMMM... THIS ONE MAKES ME HAVE A CONVERSATION WITH MYSELF ABOUT THE CONCEPT. BEAUTIFUL SIRRRR !
@ValerioVelardoTheSoundofAI
@ValerioVelardoTheSoundofAI Жыл бұрын
Thank you!
@user-uv6ri7qb4g
@user-uv6ri7qb4g 4 жыл бұрын
Im currently studying MAsters of Applied Data Analytics at one of the top universities, and your explanation is much more superior. Thanks so much !
@ValerioVelardoTheSoundofAI
@ValerioVelardoTheSoundofAI 4 жыл бұрын
Glad you liked it! Stay tuned for more ;)
@karmawangchuk283
@karmawangchuk283 4 жыл бұрын
Thank you so much for the precise explanation. Now, it is forever tattooed in my mind.
@knowandthink4960
@knowandthink4960 2 жыл бұрын
I really try to find the best video of LSTM, and I wanna to say one thing about this video. That is fucking best video to understand LSTM. I don't want to say thank you Valerio Velardo because This video deserve more than that....
@T4l0nITA
@T4l0nITA Жыл бұрын
Wow, I remember studying this years ago but understanding close to nothing, your explanation made everything clear
@ketaki9633
@ketaki9633 3 жыл бұрын
Amazing channel!!! Every doubt solved! Great playlists, theory and implementation! Kudos to you for helping hundreds of people!
@ValerioVelardoTheSoundofAI
@ValerioVelardoTheSoundofAI 3 жыл бұрын
Thank you!
@bhrz123
@bhrz123 3 жыл бұрын
Amazing explanation. There are many tutorials on lstm out there that have shown only the equations but haven't actually explained how lstm remembers or forgets an information and your video has filled up those gaps in those tutorials. Thank you for your amazing videos. I have liked and subscribed. Looking forward to more amazing tutorials from you.
@atNguyen-jv5yc
@atNguyen-jv5yc 4 жыл бұрын
There has not been much material on audio processing so I'm a big fan with this series. Really appreciate your hard work. :)
@ValerioVelardoTheSoundofAI
@ValerioVelardoTheSoundofAI 4 жыл бұрын
Thank you Dat!
@vaibhavsingh8715
@vaibhavsingh8715 3 жыл бұрын
One of the best explanation of LSTM working. Thank you so much.
@vasanthdamera5896
@vasanthdamera5896 2 жыл бұрын
I am doing my project on hourly electricity price forecasting (using Python)... There's a need to learn about LSTM. As it is the main concept of the prediction models... found this a lot helpful... now i can easily explain my peers about how an LSTM works..Thank you bro.. I hope u make much more content like this.
@jainrohit0123
@jainrohit0123 4 жыл бұрын
Awesome Explanation!! The title "Explained Easily" is really justified.
@ValerioVelardoTheSoundofAI
@ValerioVelardoTheSoundofAI 4 жыл бұрын
Thanks Rohit :)
@artyomgevorgyan7167
@artyomgevorgyan7167 4 жыл бұрын
A great explanation by comparing simple RNNs to the modified LSTM!
@ValerioVelardoTheSoundofAI
@ValerioVelardoTheSoundofAI 4 жыл бұрын
Thank you!
@reshmadevidas8380
@reshmadevidas8380 3 жыл бұрын
Wow. I happened to be reading that blogpost yesterday and quickly realised the diagram is from that blog post before you mentioned it.
@neuralmist3548
@neuralmist3548 3 жыл бұрын
What a fantastic and simple explanation. Thank you!
@leopoldodellaporta3831
@leopoldodellaporta3831 2 жыл бұрын
This video is pure gold
@Mrnobody-qj7zl
@Mrnobody-qj7zl 2 жыл бұрын
very well explained. i had few misconceptions and this awesome video just cleaned up. thanks a lot. May Lord Krishna bless you.
@alirezamirhabibi8039
@alirezamirhabibi8039 4 жыл бұрын
Very Very good explained, Thanks a lot dear Valerio.
@ValerioVelardoTheSoundofAI
@ValerioVelardoTheSoundofAI 4 жыл бұрын
Thanks!
@aashishagarwal8470
@aashishagarwal8470 4 жыл бұрын
Cleared a lot of doubts! Thank you. :)
@sanderwood
@sanderwood 4 жыл бұрын
A really good tutorial! I feel LSTM will be more suitable for music generation task.
@ValerioVelardoTheSoundofAI
@ValerioVelardoTheSoundofAI 4 жыл бұрын
Yes, LSTMs have been used extensively for music generation. Indeed, I have a series on that!
@70ME3E
@70ME3E 3 жыл бұрын
I like your energetic way of explaining it 🙂
@Kraft_Funk
@Kraft_Funk 3 жыл бұрын
Thank you John Lennon for a great explanation of LSTMs!
@ValerioVelardoTheSoundofAI
@ValerioVelardoTheSoundofAI 3 жыл бұрын
Ahahahah... sometimes they come back ;)
@manpreetkaur8587
@manpreetkaur8587 3 жыл бұрын
Beautifully explained!
@justinwong1111
@justinwong1111 4 жыл бұрын
Thank you very much! Looking for unsupervised training series.
@timuk2008
@timuk2008 3 жыл бұрын
Amazing job at explaining complex stuff! Thanks a lot
@merakid2129
@merakid2129 4 жыл бұрын
Thank you man. You made it simple and interesting.
@ValerioVelardoTheSoundofAI
@ValerioVelardoTheSoundofAI 4 жыл бұрын
Thanks - I'm happy you liked the video!
@hackercop
@hackercop 3 жыл бұрын
These videos are really good, thanks, you are a really good teacher.
@christianmitrache6317
@christianmitrache6317 3 жыл бұрын
Dude, you are literally a lifesaver!! My professors don't go into ANY details on RNNs or LSTM. Do you have any videos/github posts for transformers?
@ValerioVelardoTheSoundofAI
@ValerioVelardoTheSoundofAI 3 жыл бұрын
Thanks! I don't have videos on transformers yet, but I'll cover them in the future. Stay tuned!
@Rotnisi
@Rotnisi 3 жыл бұрын
Great video! Very good explanation! :)
@orcunkoraliseri9214
@orcunkoraliseri9214 11 ай бұрын
Why don't you put early stopping and is there any other video for LSTM tuning? Thank you. Great tutorial
@isaasricardovaldiviahernnd7736
@isaasricardovaldiviahernnd7736 3 жыл бұрын
Great video!! Help me a lot to understand LSTM
@BencFenc
@BencFenc 4 жыл бұрын
Great video - fantastic explanation. Thanks!
@ValerioVelardoTheSoundofAI
@ValerioVelardoTheSoundofAI 4 жыл бұрын
Thank you!
@Merucury
@Merucury 4 жыл бұрын
I understood well. Thanks :)
@10mpmy10
@10mpmy10 3 жыл бұрын
15:46 best part
@EngRiadAlmadani
@EngRiadAlmadani 4 жыл бұрын
great work sir but what is the advantage of output filter in lstm cell because cell state forgot the unimportant information in the beginning
@withzmh
@withzmh 3 жыл бұрын
You are awesome ! Thank you for sharing.
@i_am-ki_m
@i_am-ki_m 2 жыл бұрын
Nice, overtime! I interest to LSTM (because this method it's largest usually in engineering/programming), so what you indicates for a possible future pontual study? Keep walking to finish other series, tkx so much and chers!
@Sawaedo
@Sawaedo 3 жыл бұрын
Thank you Valerio! My question would be, how long does it takes to train a LSTM network vs a RNN, and what are the sizes comparisons between the two?
@sachinkuntal5421
@sachinkuntal5421 2 жыл бұрын
nicely explained!
@draxd3045
@draxd3045 4 жыл бұрын
Excellent video. Like it so much
@kchan8878
@kchan8878 4 жыл бұрын
Great tutorial. Thanks.
@ValerioVelardoTheSoundofAI
@ValerioVelardoTheSoundofAI 4 жыл бұрын
I'm glad you liked it!
@Magistrado1914
@Magistrado1914 4 жыл бұрын
Excellent course 15/11/2020
@SparklingCupcakez
@SparklingCupcakez 4 жыл бұрын
Great great great video!
@ValerioVelardoTheSoundofAI
@ValerioVelardoTheSoundofAI 4 жыл бұрын
Thank you Alexandra - glad you appreciated it :)
@olanmalde9312
@olanmalde9312 4 жыл бұрын
great explanation! :)
@ValerioVelardoTheSoundofAI
@ValerioVelardoTheSoundofAI 4 жыл бұрын
Thanks!
@nhactrutinh6201
@nhactrutinh6201 3 жыл бұрын
If we need long term memory, why shouldn't we make RNN the a stack or a queue to store? Why we need such a complex LSTM?
@badnewswade
@badnewswade 4 жыл бұрын
Thank you very much sensei! Do these things have their OWN biases, or do they use a common bias as well as weights / layers?
@fuweirao5770
@fuweirao5770 10 ай бұрын
Do all the weighted matrices in the dense layers keep constant during a whole time series?
@razterizer
@razterizer 3 жыл бұрын
So we just concatenate h_{t-1} with x_i in every cell and no splitting afterwards? Wouldn't then the vectors used in the cell grow for each latterally and forward connecting cell? I'm surprised that no one explains the dimensionalities. The linear algebra aspect is just as important to understand in order to be able to make an implementation.
@levran4ik
@levran4ik 4 жыл бұрын
Чётко все так разложил, красава!
@ITelefonmanI
@ITelefonmanI 4 жыл бұрын
Great explanation, thank you very much. However, I do have a question regarding the Forget Gate Layer. You say that the sigmoid function will render the values of the ft matrix to be between 0 and 1, not 0 or 1 - hence 0.45 or 0.55 are possible values in the ft matrix. So how does the next step forget (set them to 1 or 0 by elementwise multiplication) values in Ct-1?
@shruthimahalingam8936
@shruthimahalingam8936 3 жыл бұрын
Great video explanation thanks a lot!! As a student I am doing a project for evaluation of students answers based on reference answers. In that project I want to add LSTM model. Can I use LSTM for comparing similarity between two sentences(student answer and reference answer)? If so can you please suggest me one LSTM model suitable for that? It would be great if you could clarify my doubt.Thanks!
@rafsunahmad4855
@rafsunahmad4855 3 жыл бұрын
You are awesome❤️
@grjesus9979
@grjesus9979 3 жыл бұрын
thank u a lot man
@amirasad5348
@amirasad5348 2 жыл бұрын
hi thanks for your amazing channel please help me to find a good data set for genre classification except GTZAN. I need a larger dataset
@fatirali884
@fatirali884 4 жыл бұрын
Great Video Valerio! Just one question, could you explain further why we use tanh for the output layer?
@beshosamir8978
@beshosamir8978 2 жыл бұрын
Hi , i need some help here why we decide to make the next hidden state = the long memory after filter it ? why not the next hidden layer not = the long memory (Ct)
@shubhamchauhan6916
@shubhamchauhan6916 4 жыл бұрын
Sir I am facing a problem in predicting Y if I am giving my X values and I'm getting this error - expected dense_1_input to have 2 dimensions, but got array with shape (278, 1, 1) why???? I have send request to your linkedin group can I show my code there ?
@elseklinge
@elseklinge 3 жыл бұрын
hey valerio, thanks so much for this video! Are "cells" the same as "neurons"?
@ヨママ
@ヨママ 3 жыл бұрын
I think it's the entire neutral network at one time step
@fujiawang4326
@fujiawang4326 3 жыл бұрын
Hi! why do LSTMs work well with MFCC data?
@ivanatora
@ivanatora 4 жыл бұрын
You tricked me with "Explained Easily"
@ValerioVelardoTheSoundofAI
@ValerioVelardoTheSoundofAI 4 жыл бұрын
Lol - wasn't it though?
@ivanatora
@ivanatora 4 жыл бұрын
@@ValerioVelardoTheSoundofAI I got lost too many times, but its just me :) I love your videos, man, you deal with super interesting field and you are also a charming speaker. One question - let's suppose I want to prepare training dataset with audio data. I have to manually classify lots of different segments. Do you know of an app that can provide a nice UI for doing it?
@ValerioVelardoTheSoundofAI
@ValerioVelardoTheSoundofAI 4 жыл бұрын
@@ivanatora thanks :) Unfortunately, I don't know any such UI - but I know that there are several companies that do music/audio classification as a service (e.g., TagTeam). If you're familiar with Python. you could create a prototype using for example a simple Flask, MySQL, HTML stack.
@badnewswade
@badnewswade 4 жыл бұрын
On a subsequent viewing I'm REALLY confused. Wikipedia doesn't say anything about concatenation, it uses addition - wouldn't concatenation cause you to end up with unfeasably huge vectors for subsequent layers?
@Kraft_Funk
@Kraft_Funk 3 жыл бұрын
I just thought of this. But they are actually the same. Suppose you have a hidden state of size 128 and embedding vectors of size 10. If you use addition, you would multiply your embedding vector with a matrix of size (128, 10) to match with the hidden state length. And you would multiply your hidden state with a matrix of size (128, 128) so as to keep its size constant. Then you add them up. However, instead of all these, you can just concatenate your embedding vector with the hidden state, obtaining a vector of length 138, and also concatenate these two matrices yielding a size of (128, 138), and then do a single matrix multiplication. Just get a pen and paper and try these out, they are equivalent.
@jonjon-xh7xj
@jonjon-xh7xj 4 жыл бұрын
Someone should really tell colah to change the part in the image where ht=ot*tanh(Ct). In his legend there's curved lines for intersection or divergence, but in the image it's a T joint. Also, where does ht go to ? There's a split into 2 outputs of ht.
@ValerioVelardoTheSoundofAI
@ValerioVelardoTheSoundofAI 4 жыл бұрын
h_t plays two roles. It becomes the new hidden state for the current time step that's fed back into the cell at the next time step (h_t in the lower section of the image). h_t is also the output of the cell that, if we have one LSTM layer only, usually gets fed into a softmax dense layer for classification (h_t in purple circle).
@JustinMitchel
@JustinMitchel 4 жыл бұрын
Yes nice work
@ValerioVelardoTheSoundofAI
@ValerioVelardoTheSoundofAI 4 жыл бұрын
Glad you liked it!
@lawan8349
@lawan8349 4 жыл бұрын
amazing and funny tutorial
@ValerioVelardoTheSoundofAI
@ValerioVelardoTheSoundofAI 4 жыл бұрын
Thanks!
@凌璃-b8z
@凌璃-b8z 3 жыл бұрын
tks
@gb7586
@gb7586 4 жыл бұрын
This helps
@saeedullah5365
@saeedullah5365 4 жыл бұрын
Why LSTM have more accuracy than Bi directional LSTM though is noval concept
@ValerioVelardoTheSoundofAI
@ValerioVelardoTheSoundofAI 4 жыл бұрын
There are certain tasks where bidirectional LSTM layers perform better than simple LSTM layers and vice-versa. It depends on the task.
@Amsardm
@Amsardm 4 жыл бұрын
sigma(Wi[Ht-1,Xt]+Bi) need a bit of clarification on concatenating Wi[Ht-1,Xt] please :)
@TheFedonMan
@TheFedonMan 4 жыл бұрын
Concatenation is just putting the two matrices side by side either horizontally or vertically. If you concatenate horizontally the matrices must have an equal number of rows, and if you concatenate vertically an equal number of columns. For example: |10, 5| |1| |10, 5, 1| |20, 6| , |2| = |20, 6, 2| |30, 7| |3| |30, 7, 3| These two matrices cannot be concatenated vertically because the number of columns is different.
@Amsardm
@Amsardm 4 жыл бұрын
@@TheFedonMan thank you :)
@Kajahzao
@Kajahzao 4 жыл бұрын
hard to overfit these things and train ...
@oueslatiamine3843
@oueslatiamine3843 3 жыл бұрын
If I meet you one day, I'll make you a sandwich!
@ckoegl
@ckoegl 3 жыл бұрын
Very wordy explanation attempts. Fails to shed light to the influence of x_i and h_i-1 on any of the computations. Does not explain why it is important that h_i is squashed by using tanh but why C_i is not. Fails to provide any explanation why the cell's computations actually make h_i capture short term info and C_i capture long term info. More like a slow walk through the low-level operations rather than connecting them to the high-level purpose of the components.
@boriscrisp518
@boriscrisp518 9 ай бұрын
video could be 1/3 of the lengths if you stoped saying "kinda" ever other word
@TearsOnYT
@TearsOnYT 8 ай бұрын
Why don't you try making videos on machine learning as good as him then?
@marsgalaxy6734
@marsgalaxy6734 2 жыл бұрын
Too Slow. Better come to point in time. Time matters
@amansinghal5908
@amansinghal5908 3 жыл бұрын
I am not one to be spiteful, but you wasted 30 minutes of my time! This is a walk-through, not an explanation - understand the difference. 1. Don't watch this video if you want to build an intuition 2. Watch this video is you want a walkthrough, having said that - there are shorter videos out there
@ayo4757
@ayo4757 2 жыл бұрын
Hi velario, i am trying to repoduce the ai model used bay moises.ai page (tracks separaton ->> song = voice, bass, guitar, piano, batery,etc )! do you have some video or any recomendation to inroduce me in this journy ? thx you are the best!
19- How to Implement an RNN-LSTM Network for Music Genre Classification
14:29
Valerio Velardo - The Sound of AI
Рет қаралды 38 М.
17- Recurrent Neural Networks Explained Easily
28:35
Valerio Velardo - The Sound of AI
Рет қаралды 21 М.
Мама у нас строгая
00:20
VAVAN
Рет қаралды 11 МЛН
Муж внезапно вернулся домой @Oscar_elteacher
00:43
История одного вокалиста
Рет қаралды 7 МЛН
Players push long pins through a cardboard box attempting to pop the balloon!
00:31
За кого болели?😂
00:18
МЯТНАЯ ФАНТА
Рет қаралды 3,2 МЛН
Long Short-Term Memory (LSTM), Clearly Explained
20:45
StatQuest with Josh Starmer
Рет қаралды 606 М.
Illustrated Guide to LSTM's and GRU's: A step by step explanation
11:18
LSTM Recurrent Neural Network (RNN) | Explained in Detail
19:32
Learn With Jay
Рет қаралды 68 М.
Long Short Term Memory (LSTM) Networks in 20 minutes
18:35
Prof. Ryan Ahmed
Рет қаралды 10 М.
LSTM Networks - EXPLAINED!
16:12
CodeEmporium
Рет қаралды 302 М.
What is LSTM (Long Short Term Memory)?
8:19
IBM Technology
Рет қаралды 221 М.
Transformers (how LLMs work) explained visually | DL5
27:14
3Blue1Brown
Рет қаралды 3,8 МЛН
Мама у нас строгая
00:20
VAVAN
Рет қаралды 11 МЛН