A Nice Nonic Equation | Problem 408

  Рет қаралды 2,215

aplusbi

aplusbi

Күн бұрын

Пікірлер: 16
@Blaqjaqshellaq
@Blaqjaqshellaq 21 күн бұрын
Another thing you can do is consider that (z+1)^10 - z^10=0, therefore [(z+1)^5+z^5]* [(z+1)^5-z^5]=0. If the first factor equals zero, it follows that 2*z^5 + 5*z^4 + 10*z^3 + 10*z^2 + 5*z + 1=0. We can see that if z=-1/2, then (z+1)^5 + z^5=0, so we can factor out (2*z+1), giving us z^4 + 2*z^3 + 4*z^2 + 3*z + 1. On the other hand, if it's the second factor that equals zero, it follows that 5*z^4 + 10*z^3 + 10*z^2 + 5*z + 1=0. It's still pretty complicated, but a pair of quartics are less so than a single nonic.
@the_m_original
@the_m_original 21 күн бұрын
z = -0.5 solution: (z+1)^10 = z^10 both exponents are divisible by 2, therefore neither, both or one of the bases can be negative. check neither: z+1 = z no solution check both: -z-1 = -z no solution check left: -z-1 = z -2z = 1 z = -0.5 check right: z+1 = -z 2z = -1 z = -0.5 answer is z = -0.5
@MAZHOR1113
@MAZHOR1113 22 күн бұрын
What's with your mic?
@rodrigocarbia7386
@rodrigocarbia7386 20 күн бұрын
Question Can’t you just fifth root both sides and you’re left with a squared binomial that you can just develop which cancels the z squared on the other side and be left with 2z + 1 = 0
@oliviacercel5742
@oliviacercel5742 22 күн бұрын
At 7:17 the exponent of "e" is doubled. Why?! 🤔
@RuleofThehyperbolic
@RuleofThehyperbolic 21 күн бұрын
interesting equation: find all solutions for z in terms of x x^(a+z) = x^a
@the_m_original
@the_m_original 21 күн бұрын
(x^a)(x^z) = x^a x^z = 1 e^zlnx = e^i2PIn zlnx = i2PIn z = (i2PIn)/lnx for any integer n. only real solution for z is 0 where n = 0
@zzz-lo8vg
@zzz-lo8vg 21 күн бұрын
When you get your real solution for z, wouldn't you be able to solve for the complex solutions by multiplying by 10th root of unity
@scottleung9587
@scottleung9587 21 күн бұрын
Cool!
@fibroidss1194
@fibroidss1194 22 күн бұрын
But it’s a decic not a nonic
@Etienne-pq3dx
@Etienne-pq3dx 22 күн бұрын
When you develop the expression on the left hand side, you get z^10 on both sides, so the highest power is 9 (nonic)
@mcwulf25
@mcwulf25 21 күн бұрын
I did what you did although I put (z+1)/z = t Where t is a 10th root of unity. (1-t)z + 1 = 0 z = 1/(t-1) The two real values of t are 1 and -1. t=1 is undefined. t=-1 gives z = -1/2. I didn’t bother working ot the complex solutions but they will be where t = e^pi.n/5.
@Blaqjaqshellaq
@Blaqjaqshellaq 21 күн бұрын
If t=1, then z is either 1/2 + i*(3/4)^1/2 or 1/2 - i*(3/4)^1/2.
@neuralwarp
@neuralwarp 21 күн бұрын
Same again then?
@firstnamelastname442
@firstnamelastname442 19 күн бұрын
doesn’t even need to be complex, -0.5 works
@hacxman1
@hacxman1 21 күн бұрын
yes, it took me like 2 seconds. you dont even need to touch the pen
A Nice Radical Equation | Problem 414
9:13
aplusbi
Рет қаралды 1,1 М.
How to Solve Weird Logarithm Equations
9:34
blackpenredpen
Рет қаралды 248 М.
Hoodie gets wicked makeover! 😲
00:47
Justin Flom
Рет қаралды 127 МЛН
2 MAGIC SECRETS @denismagicshow @roman_magic
00:32
MasomkaMagic
Рет қаралды 37 МЛН
The Clever Way to Count Tanks - Numberphile
16:45
Numberphile
Рет қаралды 1,4 МЛН
A Very Exponential Equation | Problem 409
9:56
aplusbi
Рет қаралды 660
the most creative digit sum problem I have seen!!
18:04
Michael Penn
Рет қаралды 13 М.
What REALLY is e? (Euler’s Number)
23:18
Foolish Chemist
Рет қаралды 38 М.
How on Earth does ^.?$|^(..+?)\1+$ produce primes?
18:37
Stand-up Maths
Рет қаралды 401 М.
Why there are no 3D complex numbers
15:21
Deeper Science
Рет қаралды 81 М.
Solving a 'Harvard' University entrance exam
11:31
MindYourDecisions
Рет қаралды 304 М.
How does a calculator find square roots?
11:24
The Unqualified Tutor
Рет қаралды 308 М.
Kepler’s Impossible Equation
22:42
Welch Labs
Рет қаралды 201 М.
How to Expand x+1 Raised to an Irrational Power
11:10
Zundamon's Theorem
Рет қаралды 98 М.
Hoodie gets wicked makeover! 😲
00:47
Justin Flom
Рет қаралды 127 МЛН