How to Solve Weird Logarithm Equations

  Рет қаралды 249,137

blackpenredpen

blackpenredpen

Күн бұрын

Пікірлер: 348
@blackpenredpen
@blackpenredpen 4 жыл бұрын
To my dear recent patrons, This video was uploaded 3 months ago (as an unlisted video) and I just published it today. So if you don't see your names on the outro card, I am sorry about it. I will be sure to include your names in my new videos. Thank you, blackpenredpen
@devanshsharma8638
@devanshsharma8638 4 жыл бұрын
Please make a video on integration xsquare-1/lnx dx from zero to one The answer was ln3 My professor did it by taking a function integration x power b-1/lnx from 0 to 1 and then differentiated with respect to b and then at last taking b=2 then answer came ln3 is there any other approach
@oximas
@oximas 4 жыл бұрын
hey, what is the lambert W function? it feels like mathmaticians just define functions that solve certain equations and say thats it. like lets say I want to solve x^x =2 for x, I will define G(x^x) = x for any x taking the G function on both sides you get x = G(2) wow I solved for x genius wow. I hope you get the point, we can't just define a function as the inverse of another function to help us and say that this solve our equation, letting the computer do the rest of the work, this is stupid.
@benextinction__144
@benextinction__144 4 жыл бұрын
@@oximas bprp defined what the function does, but its strict formula would seem unnecessary as its so complex. Here it is if you want to try solving with it by hand :) images.app.goo.gl/q6txbn3FwC7X5Mrk8
@sakshitandel8572
@sakshitandel8572 4 жыл бұрын
@@md.faisalahamed5202 well all of these is the game of orientable and non orientable surface
@sakshitandel8572
@sakshitandel8572 4 жыл бұрын
@@oximas functions are defined not just when the need for them arises but they become all too common in mathematics like equations for conics etc.
@santiagonoya5702
@santiagonoya5702 4 жыл бұрын
Plz someone gifts this man a big whiteboard XD
@MathIguess
@MathIguess 4 жыл бұрын
*cries in 3 wooden planks*
@tanmayshukla5330
@tanmayshukla5330 3 жыл бұрын
Brpr is capable of writing the whole solution on a single sticky notes and you rae saying small whiteboard is not enough??
@plislegalineu3005
@plislegalineu3005 3 жыл бұрын
@@tanmayshukla5330 *bprp
@carultch
@carultch 3 жыл бұрын
@@plislegalineu3005 What does PL stand for that is legal in the EU?
@plislegalineu3005
@plislegalineu3005 3 жыл бұрын
@@carultch 🇵🇱
@anthonyguerrera191
@anthonyguerrera191 4 жыл бұрын
It’s not a black pen red pen video without the Lambert W function 😅
@GaussianEntity
@GaussianEntity 4 жыл бұрын
Name a more iconic duo
@ffggddss
@ffggddss 3 жыл бұрын
And at least one green or blue pen. Fred
@carultch
@carultch 3 жыл бұрын
What does the W mean in the LambertW function?
@Podriman
@Podriman 3 жыл бұрын
@@carultch Wambert
@minhdoantuan8807
@minhdoantuan8807 4 жыл бұрын
5:45 "Because i like u." Lmao, nice! 😂😂
@L1N3R1D3R
@L1N3R1D3R 4 жыл бұрын
"Let u, because I like you, I like you guys." Aww, we like you, too. I wasn't expecting such an endearing moment in a math video.
@molgera3
@molgera3 4 жыл бұрын
Unexpected Wholesome Moment
@Vordikk
@Vordikk 2 жыл бұрын
Ow, this was like breaking 4th wall.
@wouterdeniz
@wouterdeniz 4 жыл бұрын
I think I may speak for everyone that regularly watches your videos: We like you too and your enthusiasm you bring for solving math problems
@JSSTyger
@JSSTyger 4 жыл бұрын
The Lambert W(tf) function again...
@EsperantistoVolulo
@EsperantistoVolulo 4 жыл бұрын
*Cries in elementary functions*
@peglor
@peglor 4 жыл бұрын
1:30 approximating an 'approximately equal to' sign.
@alexmason6839
@alexmason6839 4 жыл бұрын
You really must continue with the math for fun series 😍
@juancruzftulis3249
@juancruzftulis3249 4 жыл бұрын
What kind of series? P-series? Ok... bad joke xd
@alexmason6839
@alexmason6839 4 жыл бұрын
@@juancruzftulis3249 amen bro
@MathNerd1729
@MathNerd1729 4 жыл бұрын
Since blackpenredpen didn't go through too much details into proving that u has to equal 1, I will do it for those reading this! Looking back at the original equation, there is no way u=ln(x) can be negative otherwise the left hand side would be positive and the right hand side would be negative. This justifies taking the log of both sides in the first step and taking ln(u). Now, once we reached u² - u = ln(u), we can move everything to the left hand side to get u² - u - ln(u) = 0. Let the left hand side represent a function: f(u) = u² - u - ln(u) We want to prove that the only root of this is u=1. If we can prove that u=1 is an absolute minimum then that will be a much stronger claim than what was wanted to know. That's what I'll prove. Proof by Second Derivative Test The first derivative of f is: f'(u) = 2u - 1 - 1/u f'(u) = (2u² - u - 1)/u f'(u) = (2u + 1)(u - 1)/u Since u>0, the ONLY critical point is at u=1. Now, looking at the second derivative: f(u)= 2 + 1/u² This is clearly 3 at u=1, which is greater than 0, so we've proven that u=1 is a minimum. Further more, since u=1 was the ONLY critical point according to the first derivative, then we've shown it's an ABSOLUTE minimum as well. Conclusion: Yes, u=1 is the only way we can get u² - u to equal ln(u), but it also follows from our proof that if u≠1, u² - u is greater than ln(u). Filling in the last steps of that part will be left as an exercise to either the reader or blackpenredpen's calculus students
@quantumsoul3495
@quantumsoul3495 4 жыл бұрын
Thanks
@JasonOvalles
@JasonOvalles 4 жыл бұрын
Nice algebraic proof!
@seroujghazarian6343
@seroujghazarian6343 4 жыл бұрын
The left hand side CAN be negative for abs(u)
@MathNerd1729
@MathNerd1729 4 жыл бұрын
@@seroujghazarian6343 Ah sorry, my mistake! Thanks for catching it! :)
@Nithesh2002
@Nithesh2002 4 жыл бұрын
Hmm what about solutions on the complex plane?
@garyhuntress6871
@garyhuntress6871 4 жыл бұрын
#2 is my fav because I'm 58 and had never heard of W(fish) function until I learned it here!
@SurfinScientist
@SurfinScientist 4 жыл бұрын
I am 59, and I never heard about it either. And I am a mathematician-computer scientist. Never too old to learn. Cool function!
@skycocaster
@skycocaster 4 жыл бұрын
This is simply a name for the inverse of x*exp(x), which can be proven to be a bijection, that's why W exists. Basically this is just naming some inverse function. The more traditional method would consist in proving that the function we are trying to invert is bijective and thus that the solution is unique.
@dexter2392
@dexter2392 4 жыл бұрын
@@skycocaster xexp(x) is not always a bijection though, at 0>= x >= -1/e the inverse function forms a second branch
@skycocaster
@skycocaster 4 жыл бұрын
@@dexter2392 Yes, but we have ln(x) in the equation, thus restricting the considered domain to R+*, on which the function is bijective :) If x*exp(x) was not a bijection on some considered domain, W wouldn't be a function.
@quantumsoul3495
@quantumsoul3495 4 жыл бұрын
Spoiler alert (lnx)^(lnx) = 2 lnx*ln(lnx) = ln2 e^(ln(lnx))*ln(lnx) = ln2 ln(lnx) = W(ln2) lnx = e^W(ln2) x = e^(e^W(ln2)) x+lnx = 2 ln(e^x)+lnx = 2 ln(xe^x) = 2 xe^x = e^2 x = W(e^2)
@aizek0827
@aizek0827 4 жыл бұрын
Awesome
@quantumsoul3495
@quantumsoul3495 4 жыл бұрын
@@aizek0827 :))
@damianbla4469
@damianbla4469 4 жыл бұрын
Q2 - I got the same anawer but I did it in another way: x + lnx = 2 e^(x + lnx) = e^2 e^x * e^lnx = e^2 e^x * x = e^2 x * e^x = e^2 W(x * e^x) = W(e^2) x = W(e^2)
@skylerpretto1221
@skylerpretto1221 4 жыл бұрын
@@damianbla4469 That's how I did it, too. Both methods are great though.
@nicolascalandruccio
@nicolascalandruccio 4 жыл бұрын
Ahah spoiled! For the 2nd equation, you could have started with the fact that exponential transforms sums into products. Btw, same answer. x+lnx=2 e^(x+lnx)=e^2 e^x.e^lnx=e^2 xe^x=e^2 x=W(e^2) Same as @damian bla
@WilliametcCook
@WilliametcCook 4 жыл бұрын
Teacher: talking about Lambert W function Me, not paying attention: 2 + 2 = fish
@carultch
@carultch 3 жыл бұрын
Have you been watching Flippin' Physics? They call alpha the fishy thing.
@JasonOvalles
@JasonOvalles 4 жыл бұрын
To show that u²-u and ln(u) only intersects once, I think it's enough to know that u²-u is convex and ln(u) is concave. That, combined with showing that they are tangent at u=1, is enough to show that this tangent point is their only intersection.
@pedrosso0
@pedrosso0 2 жыл бұрын
Thank you for some actual proof
@pedromello5854
@pedromello5854 4 жыл бұрын
Q1: e^(e^(W(ln2))) Q2: W(e^2)
@joshmcdouglas1720
@joshmcdouglas1720 3 жыл бұрын
That’s what I got too
@Pankaw
@Pankaw 3 жыл бұрын
yup
@KRO_VLOGS
@KRO_VLOGS 10 ай бұрын
After applying the W function add 2 and exponentiate both sides so answer will be (e^(2-W(e^2)
@Austin101123
@Austin101123 4 жыл бұрын
Q2: turn it side into exponents of e, and we get e^(x+lnx)=e^2 This becomes x*e^x=2, and then x=W(2) Q1: Let a=lnx, we have a^a=2 .Take the ln of both sides and we have alna=ln2 -->e^lna *lna=ln2, take lambert W of both sides and get lna=W(ln2), so a=e^W(ln2), replace a with lnx and have lnx=e^W(ln2), so x=e^(e^W(ln2)) lna=W(log2)-->lna*e^lna=lna*a=ln2
@d4slaimless
@d4slaimless 2 жыл бұрын
You have wrong solution for Q2. You have e(x+lnx)=e^2 -> xe^x=e^2 , so if you take W-function from both sides you will have x=W(e^2). I got the same answer with logarithms: x+lnx=lne^x+lnx=lne^2 ->ln(x*e^x)=lne^2 -> x*e^x=e^2 -> x=W(e^2) = 1,557 . Now 1,557+ ln1,557 = 2
@Austin101123
@Austin101123 2 жыл бұрын
@@d4slaimless yes looks like I messed up. I put x+lnx in the exponent on the left side but they should be multiplied not added
@jibiteshsaha4392
@jibiteshsaha4392 4 жыл бұрын
Before even starting the video I knew he Will use Lambert W and I stopped the video😂😂
@AlgyCuber
@AlgyCuber 4 жыл бұрын
q2 also : xlnx = 2 take e to both sides --> x^x = e^2 take super sqrt --> x = ssrt(e^2)
@ffggddss
@ffggddss 3 жыл бұрын
Pre-watch: (1) The first one appears to be the only one of the three that's soluble in "standard" functions. x^(ln x) = 2 - - - take ln() of both sides ... (ln x)² = ln 2 ln x = √(ln 2) x = e^√(ln 2) = 2.299184767... Curiously, if this value were to satisfy eq. 2, it would automatically also satisfy eq. 3 (just equate the LHS's of eqs. 1 & 2, and that is eq. 3). Alas, it does not. My guess is that eqs. 2 & 3 can be solved using the Lambert W function. (2) x ln x = 2; let y = ln x; x = eʸ then yeʸ = 2 - - - take W() of both sides ... y = W(2) x = e^(W(2)) (3) x^(ln x) = x ln x This one doesn't seem as cooperative ... let's see how you do it. Post-watch: Very nice! I missed the 2nd solution on eq. 1; it works, too. And for eq. 3, your graphical solution seems to be the only way to solve it. Graphical solutions usually don't cut it, but your argument (along with concavity) can make it rigorous. There can be no other (real) solutions. Fred
@blackpenredpen
@blackpenredpen 3 жыл бұрын
Thanks for the answers, Fred! Hope you have been well : )
@ffggddss
@ffggddss 3 жыл бұрын
@@blackpenredpen Thanks! I can't complain. Except about the weather and the 'lock-down,' of course. And thanks for continuing to do these, and I hope you (and your piano-playing gf) are well, too! (You seem to be...) Fred
@blackpenredpen
@blackpenredpen 3 жыл бұрын
@@ffggddss Thanks, we are : )
@spelunkerd
@spelunkerd 2 жыл бұрын
This video reminds me of how much I love maths. I wish I had done more of these when in school, practicing helps to cement fundamentals.
@rodrigomarinho1807
@rodrigomarinho1807 4 жыл бұрын
Let u because I love u was THE line of this video. Great job
@NoNameAtAll2
@NoNameAtAll2 4 жыл бұрын
9:08 Q1 let lnx = u u^u = 2 u*lnu = ln2 u = W(ln2) lnx = W(ln2) x = e^W(ln2) Q2 x + lnx = 2 e^(x+lnx) = e^2 e^lnx * e^x = e^2 x*e^x = e^2 x = W(e^2)
@TeamGCS
@TeamGCS 4 жыл бұрын
You've wrong answer at Q1 bcs you assumed that u was equal to W(ln2) when it was equal to ln(W(ln2))
@NoNameAtAll2
@NoNameAtAll2 4 жыл бұрын
I see your explanation is garbage of course, but I see the error W is for u*e^u form, not for u*lnu, so I need extra exponentiation u*lnu = ln2 let lnu = w e^w*w = ln2 w = W(ln2) lnu = W(ln2) u = e^W(ln2) lnx = e^W(ln2) x = e^e^W(ln2)
@TeamGCS
@TeamGCS 4 жыл бұрын
@@NoNameAtAll2 Thanks for calling my explanation garbage, very heartwarming.
@stevek1221
@stevek1221 4 жыл бұрын
For 2), I had xlog(x)=2 log(x)=2/x x=e^(2/x) 1=1/x * e^(2/x) 2=2/x * e^(2/x) W(2)=2/x x=2/W(2) And according to WolframAlpha this is the exact same value as e^W(2)?
@jakemoll
@jakemoll 4 жыл бұрын
Unsurprising, since that would mean 2/W(2) = e^W(2) Then 2 = W(2)e^W(2), which fits the definition of the W fn, since you can then take W of both sides and get W(2) = W( W(2)e^W(2) ) which = W(2)
@stevek1221
@stevek1221 4 жыл бұрын
@@jakemoll very true!
@goodplacetostart9099
@goodplacetostart9099 4 жыл бұрын
Yeah it's a property of Lambert W let y×e^y=x y=W(x) Hence W(x)×e^W(x)=x
@elvinsamedov547
@elvinsamedov547 4 жыл бұрын
Guys, Why did you try so hard?what you do is actually half a line. x=2/ln x →x=2/ln (e^W(2))=2/W(2) Done!
@elvinsamedov547
@elvinsamedov547 4 жыл бұрын
@@jakemoll simpler than you actually do..
@naushaadvanderveldt5342
@naushaadvanderveldt5342 4 жыл бұрын
Q1: Ln(x)^ln(x)=2 Taking the natural log on both sides: Ln(ln(x)^ln(x))=ln(2) which simplifies to ln(x)*ln(ln(x))=ln(2) Let u=ln(x) u*ln(u)=ln(2) You can write u as e^ln(u) so, ln(u)*e^ln(u)=ln(2) Taking the Lambert W function on both sides: W(ln(u)*e^ln(u))=W(ln(2)) ln(u)=W(ln(2)) u=e^W(ln(2)) Since we defined u to be ln(x): ln(x)=e^W(ln(2)) x=e^(e^W(ln(2))) Q2: x+ln(x)=2 You can write x as e^ln(x) so, e^ln(x)+ln(x)=2 e^ln(x)=2-ln(x) Multiply by e^-ln(x): 1=(2-ln(x))*e^-ln(x) Multiply by e^2 so we can use W Lambert function: e^2=(2-ln(x))*e^(2-ln(x)) Taking W Lambert function on both sides: W(e^2)=W((2-ln(x))*e^(2-ln(x))) W(e^2)=2-ln(x) ln(x)=2-W(e^2) x=e^(2-W(e^2)) This was pretty hard to type so please let me know if I have made any mistakes.
@mahmoudalbahar1641
@mahmoudalbahar1641 4 жыл бұрын
very cool.....your answer is 100% true
@naushaadvanderveldt5342
@naushaadvanderveldt5342 4 жыл бұрын
@@mahmoudalbahar1641 Thanks!
@imirostas4920
@imirostas4920 2 жыл бұрын
I did Q2 like this: x+ln(x)=2 e^(x+ln(x))=e^2 Notice: a^(b+c)=(a^b)*(a^c) (e^x)*(e^ln(x))=e^2 Notice: e^ln(x)=x --> the exponential and logarithm cancel each other x*e^x=e^2 x=W(e^2) so x is approximately: 1.55714559899761... plugging this in for x in x+ln(x) yields 2
@naushaadvanderveldt5342
@naushaadvanderveldt5342 2 жыл бұрын
@@imirostas4920 very smart! On closer inspection of my final answer (e^(2-W(e^2))), it is indeed equal to yours (W(e^2)) by the properties of the Lambert W function. Following is a proof of this for those who are curious: Rewrite e^(2-W(e^2)) as (e^2)/(e^W(e^2)) Remember the definition of the LambertW function as the inverse of xe^x, so W(x)e^W(x)=x which can be rewritten as: e^W(x)=x/W(x). In our case: e^/e^W(e^2) = e^/(e^2/W(e^2)) in which the term e^2 cancels out and so does the double fraction so what you’re left with is just W(e^2). Edit: upon rereading this, i realized there was a much easier way to do this and I actually feel kind of dumb for not seeing this earlier: Remember the definition of the LambertW function as the inverse of xe^x, so W(x)e^W(x)=x Multiply by e^-W(x) to get xe^-W(x)=W(x) In our case: e^(2-W(e^2))=e^2*e^-W(e^2) which precisely fits our above proven property and thus equals W(e^2).
@2-_
@2-_ 3 жыл бұрын
3:33 why did this give me a better idea of what the lambert w function does than anything else
@2-_
@2-_ 3 жыл бұрын
oh wait you did a whole video on this lemme check it
@stapler942
@stapler942 4 жыл бұрын
Here's how I did the u^2 - u = ln(u) step without the graph: -Take e to the power of both sides. e^(u^2 - u) = u -Differentiate both sides to get e^(u^2 - u) * (2u - 1) = 1 -Divide both sides by (2u - 1). -Now you have the identity e^(u^2 - u)= u = 1/(2u - 1) -Using the quadratic formula you can get: u = 1 or -1/2 -Since ln(u) is not defined for negative numbers we discard -1/2 and say that u = 1.
@SKMathPosnMathsk-fg3fu
@SKMathPosnMathsk-fg3fu 2 жыл бұрын
Nice.
@d4slaimless
@d4slaimless 2 жыл бұрын
I am sure you can't use differentiation this way. For example if you have equation x^2=x the obvious answer is 1. But if you differentiate both sides you will have 2x=1 and it gives you x=1/2. Derivatives for functions are not necessary equal at the same point where functions equal. They are equal where tangents are the same.
@louislecam7773
@louislecam7773 4 жыл бұрын
Here is a very interesting video, thank you !!!
@ThreePointOneFou
@ThreePointOneFou 3 жыл бұрын
3:25 i knew just looking at the thumbnail that good old W(x) was going to come up. If it was up to this guy, the Lambert W function would be built into every scientific calculator.
@maliciousmarka
@maliciousmarka 4 жыл бұрын
Him: Let u, because I like you guys, be = ln(x) Us: It’s only *Natural* he says that about us
@plislegalineu3005
@plislegalineu3005 3 жыл бұрын
US United States? XD
@danny1504-g2d
@danny1504-g2d Жыл бұрын
Wow, your math problems and the way you solve it really gives me inspiration to learn more about this subject, Math, that i used to hate a lot.
@richardfredlund3802
@richardfredlund3802 4 жыл бұрын
that was awesome. i like how all three had quite different solutions.
@scares009
@scares009 4 жыл бұрын
x^ln(x) = xln(x) e^[x^ln(x)] = e^[xln(x)] = x^x On the right, we have some variable raised to the same variable. On the left, we have something raised to something else. This means, by comparison, that the something and something else are equal. So, e = x^ln(x) 1 = ln(x)^2 +/- 1 = ln(x) e^(+/- 1) = x Only positive 1 works, so x = e
@bagochips1208
@bagochips1208 3 жыл бұрын
heres what I got for 9:09 questions 1) x = e^[w(2)] 2) x = w(e^2)
@joshmcdouglas1720
@joshmcdouglas1720 3 жыл бұрын
I think that first one is wrong
@Veefencer
@Veefencer 3 жыл бұрын
@@joshmcdouglas1720 Yep, i guess it has to be e^(e^(W(ln2)))
@joshmcdouglas1720
@joshmcdouglas1720 3 жыл бұрын
@@Veefencer yep!
@macurvello
@macurvello 3 жыл бұрын
Veefencer that's what I got, too
@sueyibaslanli3519
@sueyibaslanli3519 4 жыл бұрын
If you know what W function is it, both of 5 questions take just a minute. Thanks teacher, I have learned W function from you 😊
@itaycohen7619
@itaycohen7619 4 жыл бұрын
I did 3 like that : X^lnx = xlnx e^ln^2(x) = (e^lnx)*lnx Flipping the e to the powers to the other sides we get : e^-lnx = (lnx)e^-ln^2(x) Multiply both sides by -lnx we get : -lnx(e^-lnx)=-ln^2(x)*(e^-ln^2(x)) And now, all that is left is to take the lambert w fucntion on both sides to get : -lnx = -ln^2(x) a simple equation with the solution x=e. Also gives x=1 but we check to see it dosent work for 1.
@pedrosso0
@pedrosso0 2 жыл бұрын
Same
@jjpswfc
@jjpswfc 4 жыл бұрын
Thank you for all your videos that you do, they're always really helpful for my maths even though I'm from the UK :)
@ilyashick3178
@ilyashick3178 Жыл бұрын
Great ! some interesting staff: x intercepts as u^2-u=0 and u=0 and u= 1 then only ln_eX= 1 and then E=X.
@donaldmcronald2331
@donaldmcronald2331 10 ай бұрын
Q1 was easy: You can also use a substitution. Before that you take the ln on both sides and get u*ln(u)=ln(2). Just change that to ln(u)*e^(ln(2))=ln(2). Finally, you use W(x) and do the resubstitution and you get x=e^e^((W(ln(2)))) Q2: do e on both sides: e^(x+ln(x))=e^2. Then use properties of exponents and pull them apart. e^(ln(x)) simpplifies to x and you can use W(x) again, so x*e^x=e^2 x=W(e^2)
@humanoidtyphoon991
@humanoidtyphoon991 6 ай бұрын
For Q2 you can also rewrite x as ln(e^x) and then use the properties of ln to have ln(xe^x)=2, you take e on both sides and you get xe^x=e^2 and then use W(x) so x=W(e^2)
@Ethiomath16
@Ethiomath16 4 жыл бұрын
Really fun and excellent way of solving
@liab-qc5sk
@liab-qc5sk 4 жыл бұрын
Q1 the sol: exp(exp(W(ln(2)))) Q2 the sol: exp(2-W(exp(2)))
@anuraagrapaka2385
@anuraagrapaka2385 4 жыл бұрын
0:16 reminded me of WII (mariokart) and those joyful moments
@d4rk_1egend
@d4rk_1egend 2 жыл бұрын
An easier way to solve the 1st log problem would be to rewrite each side so they have the same base so then we would rewrite the x in x^ln(x) as e^ln(x), so then we would have e^(ln(x))^2, then we would rewrite the 2 as e^ln(2), thus we have e^(ln(x)^2=e^ln(2), we can see they have the same base so then we have the equation (ln(x))^2=ln(2), we then take the square root (positive and negative) on both sides to get ln(x)=sqrt(ln(2)), then we exponentiate it to find that the solutions are x=e^sqrt(ln(2)), and x=e^-sqrt(ln(2)).
@Mutlauch
@Mutlauch 4 жыл бұрын
Dear bprp, First let me tell you that what you are doing is amazing and an incredible inspiration for me and most certainly for many others as well :) Furthermore, I want to point out that for all real numbers r the equation x(x-1)=r*ln(x) has a unique solution at x=1 : 1(1-1)=r*ln(1) => 1*0=r*0 and this is true for all real numbers r. But it could be very difficult, if at least one of the coefficients of the polynomial on the left side is not equal to 1 (and obviously if those coefficients are not equal to each other) or the parabola is shifted horizontally. Greetings from Germany 😊
@IngeniusFool
@IngeniusFool 4 жыл бұрын
0:06 pause here 🤔 and ponder 💭
@rom2089
@rom2089 3 жыл бұрын
btw for the 3rd problem: using properties of logarithms (ln(X))^2 - ln(X) = (ln (X/X))^2= ln(1)^2=0 so you have 0=ln(ln(X)) 1=ln(X) and finally X=e
@peterharmouche8662
@peterharmouche8662 3 жыл бұрын
this is incorrect, ln(x)^2 - ln(x) is not equal to ln(x/x)^2 because the property of logarithms you're referring to (ln(a) - ln(b) = ln(a/b)) can't be used if one of the ln is squared Here's the full answer: x*ln(x) = x^ln(x) (divide by x) (x can't be equal to 0) ln(x) = (x^ln(x))/x = x^(ln(x)-1) (replace x by e^ln(x) on the RHS) ln(x) = e^((ln(x)*(ln(x)-1)) = e^(ln(x)^2)*e^(-ln(x)) (multiply by -ln(x)*e^(-ln(x)^2)) (ln(x) can't be equal to 0) (-ln(x)^2)*e^(-ln(x)^2) = (-ln(x))*e^(-ln(x)) (take the lambert w function on both sides) -ln(x)^2 = -ln(x) (re-arrange) ln(x)^2 - ln(x) = 0 (take ln(x) common factor) ln(x)*(ln(x)-1) = 0 (2 possibilities) ln(x)-1 = 0 or ln(x) = 0 (but we already know from earlier that ln(x) can't be equal to 0) ln(x) = 1 x = e
@jeffreyluciana8711
@jeffreyluciana8711 4 жыл бұрын
Love logarithms!
@garavelustagaravelusta9717
@garavelustagaravelusta9717 4 жыл бұрын
For the second question, can't you just solve it like this: ln(xlnx) = ln(2) ln(x) + ln(lnx) = ln(2) Let ln(x) = u; u = ln(2) - ln(u) u = 0.693 - ln(u) Finally, solve out for the common points of two sides of the equation (like in part 3). Great Channel btw.
@navman2014
@navman2014 4 жыл бұрын
How would you ever find the common point? It's not nice like 1 its a irrational number.
@Darkev77
@Darkev77 3 жыл бұрын
7:55 wouldn’t any 2 graphs have the same tangent at point “x” if they touch/intersect at point “x”?
@Joe-uz7qm
@Joe-uz7qm 3 жыл бұрын
Only if those two graphs *touch* each other at the abscissa of "x". If they intetsected, they'd necessarily need to have a different slope. Consider the two functions *f (x) = x* and *g (x) = -x* . They intersect at the Point P (0|0). But do they have the same "tangent" at "x"? Since f's slope(/tangent) at x=0 is equal to 1 and g's one is equal to -1, they don't have. I hope you understand, what I'm about to show you. But you're right in your first assumption: Any two graphs have the same tangent at P (x|y) if they only *touch* at that same point. Maybe you can keep that in mind, remembering the etymological origin of the noun "tangent". tangent is derivated from the latin verb "tangere" which actually means "to touch". So yeah: If any two (or even more) graphs touch ( *tangere* ) in "x", they have the same *tangent* (or slope) in that correspondent point P (x|y). I hope, this could help you a little bit :)!
@Darkev77
@Darkev77 3 жыл бұрын
@@Joe-uz7qm wow you’re awesome! Thanks a LOT! Also, I guess two graphs/planes can have the same tangent line if they intersect everywhere 😂, but thanks a lot. Brilliant
@Joe-uz7qm
@Joe-uz7qm 3 жыл бұрын
@@Darkev77 Oh well, you're right, I didn't think of this case at all 🤔😂. But I must admit: English isn't my native language, so I'm not sure if it's considered an "intersection", supposing that two graphs coincide perfectly. I mean, only regarding to linguistical aspects. In my native language German, we have a particular term for this case of "perfect congruence", but that's definitely something, you know better than me 😊! I'm glad, I could help you with this and I'm really grateful for your positive feedback to my explanation😊! Have a nice day 😃!
@Darkev77
@Darkev77 3 жыл бұрын
@@Joe-uz7qm I guess you’re true, there is definitely a better term for surfaces that intersect everywhere lol! Also thanks a lot for your explanation and feedback! You’re very nice bro, I appreciate it a lot!!!
@Joe-uz7qm
@Joe-uz7qm 3 жыл бұрын
@@Darkev77 Likewise, Bro 💪🖤!
@masonhyde9411
@masonhyde9411 4 жыл бұрын
@blackpenredpen I had a math problem that I would love for you to do. I have had people tell me "it's impossible" and it "can't be simplified" but I know there must be a way. x^(x+1)=ln 3
@learnwithfun-swayamgupta5836
@learnwithfun-swayamgupta5836 4 жыл бұрын
I had got two answers, can you tell correct answer for this question please 1st answer-0 and; 2nd answer-3.
@SKMathPosnMathsk-fg3fu
@SKMathPosnMathsk-fg3fu 2 жыл бұрын
These videos are really helpful 😊. I love logarithm now 😀.
@branthebrave
@branthebrave 4 жыл бұрын
alternate to the first one: x ^ lnx = e ^ ln2 lnx / ln2 = log_x(e) lnx / ln2 = lne / lnx ln^2(x) = ln2 x = e ^ sqrt(ln2)
@EclipsianVanadis
@EclipsianVanadis 4 жыл бұрын
How does one solve u^2-u=ln(u) without graphs?
@zeranderman4170
@zeranderman4170 2 жыл бұрын
@@stapler942 e^(u^2 -u) =/= u for all cases so you cant generalise it
@ikntc514
@ikntc514 2 жыл бұрын
I feel so happy that I solved the second equation at the end🔥🔥 i basically did: x+lnx=2 ln(e^x)+lnx=2 sum of logs = log of the product =ln(xe^x)=2 xe^x=e^2 so the answer is the Lambert W Function of e^2
@danielmendes2923
@danielmendes2923 4 жыл бұрын
"I feel the pressure" 😂😂😂
@astraestus8828
@astraestus8828 4 жыл бұрын
I love this channel.
@nachiketsharma4507
@nachiketsharma4507 4 жыл бұрын
Best math on yt
@Pro_bro_is_the_best_Rn
@Pro_bro_is_the_best_Rn Ай бұрын
NOOOOOOOOOOOOO BRO DID A MISTAKE, X = 1 DOES NOT SOLVE the last equation
@architamohanty1880
@architamohanty1880 4 жыл бұрын
1st HW Question's Answer x = e^W(2)
@gbc1827
@gbc1827 4 жыл бұрын
Wow this lecture reminds me of my calculus class when i was in high school XD
@KingGisInDaHouse
@KingGisInDaHouse 4 жыл бұрын
The first one I got by taking log base x on both sides to get ln x= logX(2). Use change of base Ln(x)=ln(2)/ln(x) Ln^2(x)=ln(2) You get the idea 3rd one I just guessed e.
@serenityteachings
@serenityteachings 4 жыл бұрын
You sir are a legend
@ilyas6601
@ilyas6601 3 жыл бұрын
I did the first one in my head before watching and i found x = √(2e) as a good approximation (~2.33). As some teacher said someday: "I dont know, but you used the wrong formula and got the correct answer."
@AllInOne-nz5kg
@AllInOne-nz5kg 3 жыл бұрын
Please make a full course on logarithms if you already made then please give me it's link
@Lamiranta
@Lamiranta 4 жыл бұрын
3:33 Yeah, I got my fish back!
@erikestrella7240
@erikestrella7240 4 жыл бұрын
When sacas la gráfica jeje, la vieja confiable
@takyc7883
@takyc7883 4 жыл бұрын
Is there a method to purely algebraically solve 3.?
@integralboi2900
@integralboi2900 4 жыл бұрын
These are my answers: Q1: (ln(x))^ln(x)=2 We know the solution to 🤔^🤔=2 is 🤔=e^W(ln(2)) So if 🤔=ln(x), then ln(x)= e^W(ln(2)), so x= e^(e^W(ln(2))) Q2: x+ln(x)=2 ln(e^x)+ln(x)=2 ln(xe^x)=2 x=W(e^2)
@yuvalnachum4190
@yuvalnachum4190 4 жыл бұрын
Hey blackpenredpen i really love your math for fun videos. Try this math for fun question : In rectangle ABCD the area is equal to the perimeter and to the diagonal . find AB and BC.
@azmilenario
@azmilenario 4 жыл бұрын
Thank you very much for your videos
@AkromaStrategy
@AkromaStrategy 3 жыл бұрын
when did this channel become blackpenredpenbluepen?
@prathampatel1740
@prathampatel1740 3 жыл бұрын
mans gotta make a video on the lambert W function, like an explanation
@Kdd160
@Kdd160 4 жыл бұрын
This is cool
@mehmeteminconkar2590
@mehmeteminconkar2590 Жыл бұрын
Q1 sol equals e^e^w(ln2)
@aubertducharmont
@aubertducharmont 2 жыл бұрын
On problem 2 you said that for calculating lambert w function you need wolfram alpha or mathematica. But thats not true. You need just a calculator and use Newton-Raphson or Hailey iteration formula.
@kalles8789
@kalles8789 4 жыл бұрын
The good old Lambert-W-function.
@felipediaz232
@felipediaz232 4 жыл бұрын
Sigue con esos videos resolviendo ecuaciones cortas y extrañas 👍🏼👍🏼
@montsaintleondr7491
@montsaintleondr7491 4 жыл бұрын
Cool pockemon ball microphone and also some nice explanations!
@pedrosso0
@pedrosso0 2 жыл бұрын
Here's how to find the value without looking at a graph: x^lnx = xlnx e^ln^2(x)=lnx e^lnx e^(-lnx)=lnx e^(-ln^2(x)) -lnx e^(-lnx)=-ln^2(x) e^(-ln^2(x)) -lnx=-ln^2(x) 1=lnx x=e All solutons would have something to do with the lambert W function
@intraced
@intraced Жыл бұрын
Okay, so I did the math, and here are the solutions to the 2 equations at the end of the video: lnx^lnx = 2 Take ln of the equation to move lnx power to the front ln(lnx^lnx) = ln2 lnx * ln(lnx) = ln2 Anything = e^ln(Anything) e^ln(lnx) * ln(lnx) = ln2 Now we have fish * e^fish so we take lambert W lnlnx = w(ln2) Take e to both sides twice to get solution x = e^e^w(ln2) x + lnx = 2 Move x to other side lnx = 2 - x Take e to both sides to get rid of ln x = e^(2 - x) If you made it to calculus you know this step x = e^2/e^x Multiply both sides by e^x xe^x = e^2 We have fish * e^fish so take lambert W x = w(e^2)
@ChessGrandPasta
@ChessGrandPasta 4 жыл бұрын
5:45 oh you like uranium?
@dushyanthabandarapalipana5492
@dushyanthabandarapalipana5492 2 жыл бұрын
I am so greatful to you in this trouble so me time in sri Lanka!
@estera742
@estera742 3 жыл бұрын
Q1:x=e^e^w(ln2)
@frapassante
@frapassante 3 жыл бұрын
For the third equation, when you get to u^2 - u = ln(u), you can just differentiate both of them, and you get a 2nd degree equation which has two solutions: u = 1 and u = -1/2. Since you have ln(u) in the equation, u must be > 0, so the only acceptable solution would be u = 1 :)
@vbprogrammer95
@vbprogrammer95 3 жыл бұрын
Except deriving both sides is not something you can do to solve an equation. Take x²=4. Its solutions are 2 and -2, but if you derive it you get 2x=0, so x=0, which is absurd. Also if you have something like x=lnx the derivative changes (and by a lot) if you move one side to the denominator of the other.
@frapassante
@frapassante 3 жыл бұрын
Leggere il commento che ho scritto ora, dopo aver seguito analisi 1, mi fa sentire davvero un cretino. Vorrei cancellarlo, ma magari qualcuno che avrebbe fatto il mio stesso errore potrà correggersi con la tua risposta, quindi grazie!
@frapassante
@frapassante 3 жыл бұрын
Also, I guess it would only make sense to derive both sides if the relation is an identity
@shefaligupta9944
@shefaligupta9944 4 жыл бұрын
In the second one you can still take log on both sides and solve the quadratic
@frosch_9782
@frosch_9782 4 жыл бұрын
I solved the first now you try question! First time i was able to solve an equation from your videos
@BulaienHate
@BulaienHate 3 жыл бұрын
I thought it was interesting that you used substitution on the last one I had used it on the other ones too when doing it in my head while in bed, I didn't get the last one done in my head though sadly
@azimbekshirinboyev1471
@azimbekshirinboyev1471 4 жыл бұрын
Super! Bravo!
@sebastianbarbu8691
@sebastianbarbu8691 4 жыл бұрын
When and where have you learned those things?
@cadlag2010
@cadlag2010 4 жыл бұрын
for 2, you can directly apply W(xln(x))=ln(x)
@manuelruizsanchez2053
@manuelruizsanchez2053 4 жыл бұрын
Could you teach some tricks for optimization and real problems with them in the current life? Kisses from Spain and thanks for the video, as always you're excellent ❤️🤙
@renielescopete2558
@renielescopete2558 3 жыл бұрын
Reniel escopete R 11-humms B 2nd pandemic
@MK-tb6rb
@MK-tb6rb 2 жыл бұрын
Q1 X=e^e^W(ln2) Q2 X=W(e^2)
@Jordan-zk2wd
@Jordan-zk2wd 4 жыл бұрын
Another good one: x^ln(y)=y^ln(x). Looks really complicated, until you realize...
@tarfarian
@tarfarian 4 жыл бұрын
5:43 I'm definitely not using that on someone ;)
@orenfivel6247
@orenfivel6247 4 жыл бұрын
this is 2 cool sol.: BTW can u solve (*) y' =-ay⋅(1-y)^2, i.e., WTF y(x) s.t solves (*) for a>0? I Think LambertW function is involved. maybe W(0,x) or W(-1,x).
@a.osethkin55
@a.osethkin55 4 жыл бұрын
Thanks
@jakeypowell1831
@jakeypowell1831 Жыл бұрын
For Q1 at the end of the video: (lnx)^(lnx)=2 lnx(lnx)^(lnx)=ln2 lnx=w(ln2) x=e^(w(ln2)) // x=e^(w(e^(2)))
@jayktomaszewski8738
@jayktomaszewski8738 11 ай бұрын
3 is my favourite
@rikhalder5708
@rikhalder5708 4 жыл бұрын
What is application of Lambert w function.
@jkoh93
@jkoh93 4 жыл бұрын
it is just to take the inverse of a function that cannot otherwise be inversed. the inverse of e^x is lnx. the inverse of xe^x is W(x). e^(lnx) = ln(e^x) = x. so is W(x)e^W(x) = W(xe^x) = x. to calculate lnx, you need an infinite series. to calculate W(x), you need to use approximations like Newton's method
@jaymsf4895
@jaymsf4895 3 жыл бұрын
I got for Q1: x = e^[e^(W(2))] And for Q2: x = W(e^2)
they don’t teach these kinds of expoential equations in algebra
11:44
БАБУШКА ШАРИТ #shorts
0:16
Паша Осадчий
Рет қаралды 4,1 МЛН
How to Take the Factorial of Any Number
26:31
Lines That Connect
Рет қаралды 1,3 МЛН
EXTREME quintic equation! (very tiring)
31:27
blackpenredpen
Рет қаралды 664 М.
INSANE DRAMA: Magnus Carlsen SPLITS World Chess Championship
34:04
GothamChess
Рет қаралды 653 М.
What is Euler's formula actually saying? | Ep. 4 Lockdown live math
51:16
Why There's 'No' Quintic Formula (proof without Galois theory)
45:04
not all wrong
Рет қаралды 551 М.
The Integral of your Dreams (or Nightmares)
8:41
BriTheMathGuy
Рет қаралды 430 М.
How to solve exponential equations (10 examples from easy to hard!)
33:03
How (and why) to raise e to the power of a matrix | DE6
27:07
3Blue1Brown
Рет қаралды 2,9 МЛН
Why can't the 1/(3x) be replaced with 0? Reddit calculus limit r/calculus
8:32
bprp calculus basics
Рет қаралды 459 М.
БАБУШКА ШАРИТ #shorts
0:16
Паша Осадчий
Рет қаралды 4,1 МЛН