You must replace π for (π+2kπ) inside Euler's identity. Your solution covers only the case k=0
@Mathematicalexpression3 сағат бұрын
Класс
@RobertCantwell-z1n18 сағат бұрын
Very interesting , good methods .
@askmaxim19 сағат бұрын
x=1/log[base 5](-5)
@GigsChad-di9oiКүн бұрын
Nice i learnt a alot ❤from india
@jdbtwo16 сағат бұрын
This is almost the exact same problem that was shown on this channel in a previous video here : kzbin.info/www/bejne/nHyxiaR8Z9ypZrcsi=qzxqJhzhg5vtjfH1 . One can use the exact same solution method I outlined in the comments to said video here : kzbin.info/www/bejne/nHyxiaR8Z9ypZrc&lc=UgyLcY43MCBsiHK3ZYF4AaABAg&si=LYPguB60eXeRYLUF (Hint : ln(-1) = i*pi )
@Eggehman16 сағат бұрын
How about 2/2 ?
@marzipanhoplite1718 сағат бұрын
I used the first method exactly the way you did and ended up to the same result,but we cannot write x in the form a+bi
@HowardR91118 сағат бұрын
You asked "write x in the form a+bi". Multiply first solution numerator and denominator by (iπ - ln5) and then simplify
@EASY_ENGINEER17 сағат бұрын
So: 2*ln(i) == i*Pi, is it correct? :)
@57abs18 сағат бұрын
Why can't we just say it's √(-5)^2, the square root gives the two positive and negative values.
@fewwiggle11 сағат бұрын
We can say anything -- and some of what we say may even be true . . . ;-) But, seriously, where does your answer come from? And, what is the basis for claiming there are multiple solutions?