A Very Nice Geometry Problem | You should be able to solve this! | 3 Different Methods

  Рет қаралды 4,782

Math Booster

Math Booster

Күн бұрын

Пікірлер: 19
@soli9mana-soli4953
@soli9mana-soli4953 3 күн бұрын
There would be two other possible methods, the first with a trigonometric approach, the second with a logical approach: With trigonometry: Since the area requested is equal to Area = (R²/4 - r²)*π (1) we can find the two radii like this: R = 8/cos α r = R/2*sin α and substituting R r = 4 sin α/cos α therefore the area (1) is: Area = (8²/cos²α*1/4 - 4²* sin²α/cos²α)*π Area = 16/cos²α*(1 - sin²α)*π Area = 16*π In the logical approach, observing that we have no particular constraints either for the position of the chord CD or for the radius of the smaller circle, then we can imagine that the radius of the smallere circle is equal to zero and so the chord CD coincides with the radius of the quarter circle, therefore the area will be equal to 8²/4 = 16
@ناصريناصر-س4ب
@ناصريناصر-س4ب 3 күн бұрын
Let R be the radius of the larger circle and r be the radius of the smaller circle, and the required area is equal to πR²/4-πr²=(π(R²-(2r)²)/4=π(OD²-OC²)/4=π*64/4=16π
@ThenmozhiGovindaraj-sj1hi
@ThenmozhiGovindaraj-sj1hi 2 күн бұрын
Correct
@ThenmozhiGovindaraj-sj1hi
@ThenmozhiGovindaraj-sj1hi 2 күн бұрын
OD^2-OC^2=8^2=64
@prossvay8744
@prossvay8744 2 күн бұрын
Let R is Radius of the sector and r is the Radius of the circle. Area of the sector=1/4(π)R^2 (1)) Area of the circle=(π)r^2 (2) Connect O to D In ∆OCD OC^2+CD^2=OD^2 (2r)^2+8^2=R^2 4r^2+64=R^2 So R^2-4r^2=64 Blue area=1/4πR^2-πr^2=π/4(R^2-4r^2)=π/4(64)=16π.❤
@santiagoarosam430
@santiagoarosam430 2 күн бұрын
El círculo pequeño de radio OC/2, tiene una superficie de 1/4 de la de otro círculo de radio =OC → Área sombreada = (1/4)*(Área de la corona circular delimitada por las circunferencias concéntricas de radios OD y OC) = π(OD²-OC²)/4 =π*CD²/4 = π8²/4 =16π. Gracias y saludos.
@marioalb9726
@marioalb9726 3 күн бұрын
A = ¼(¼πc²)= 1/16 π(2*8)² A = 16π cm² ( Solved √ ) Too completated vídeo solution Just need to move the small circle at the quadrant center, and then apply the formula of circular ring area, respect to the chord, and then divide by 4.
@russcooper9628
@russcooper9628 2 күн бұрын
If you consider the limiting case where the circle shrinks to nothing, then OB = CD = 8. From there, you just have a quarter circle with radius 8.
@jimlocke9320
@jimlocke9320 2 күн бұрын
The problem statement implies that CD may be located anywhere above OB as long as a valid figure is produced. Moving CD closer and closer to OB results in a smaller and smaller circle which would disappear if CB were allowed to align with OB, the limiting case. For a multiple choice test or a test where you are not required to show your work, solve the limiting case and either choose the corresponding multiple choice answer or write down that answer, as appropriate. If you are required to solve the general case and show your work, the limiting case can be used as a check that you've solved the problem correctly.
@quigonkenny
@quigonkenny 2 күн бұрын
Let R be the radius of the quarter circle and r the radius of the smaller circle. As the shaded area is equal to the difference in the areas between the quarter circle and the smaller circle, the formula is as follows: Aₛ = πR²/4 - πr² Aₛ = (πR²-4πr²)/4 Aₛ = (R²-4r²)π/4 Triangle ∆DCO: DC² + OC² = OD² 8² + (2r)² = R² 64 + 4r² = R² R² - 4r² = 64 (π/4)(R²-4r²) = (π/4)64 (R²-4r²)π/4 = 16π [ Aₛ = 16π ]
@michaeldoerr5810
@michaeldoerr5810 3 күн бұрын
The answer is 16pi. Also if I can summarize ALL three methods-which are familiar to me fully-the first method requires direct application of the Pythagorean Theorem and makes the substitution of R^2-4delta^2 for 64 getting us pi/4*64. The second method requires making a circle which shows that because of the symmetry of CD and CF, you can make use of the interecting chords theorem. And lastly the third method make use of the circle theorem that justifies the HL similarity that involves beta-alpha-right angle comparison. And these I almost know by heart and I hope that this means thay I definitely SHOULD be able to know how to do this!!!
@tontonbeber4555
@tontonbeber4555 2 күн бұрын
First idea that come Area quarter (blue + yellow) = pi r² / 4 r² = 64 + x² where x is diameter of yellow circle Area quarter = pi (16 + x²/4) Area yellow circle = pi x²/4 And so blue area = 16 pi
@yakupbuyankara5903
@yakupbuyankara5903 2 күн бұрын
16×3,14
@RealQinnMalloryu4
@RealQinnMalloryu4 2 күн бұрын
(8)^2=64.90°ABCDO/64=1.26 1.2^13 1.2^13^1 1.2^1^1 2^1 (ABCDO ➖ 2ABCDO+1).
@ItsKaranrana
@ItsKaranrana 2 күн бұрын
Don't use google voice bro
@AmirgabYT2185
@AmirgabYT2185 2 күн бұрын
S=16π
@nenetstree914
@nenetstree914 3 күн бұрын
16 pi
@joegillian6781
@joegillian6781 3 күн бұрын
に、日本語やん!
A Very Nice Geometry Problem | 2 Different Methods
12:07
Math Booster
Рет қаралды 8 М.
Find the length X | A Very Nice Geometry Problem
11:42
Math Booster
Рет қаралды 11 М.
Who's spending her birthday with Harley Quinn on halloween?#Harley Quinn #joker
01:00
Harley Quinn with the Joker
Рет қаралды 25 МЛН
Human vs Jet Engine
00:19
MrBeast
Рет қаралды 208 МЛН
How Much Tape To Stop A Lamborghini?
00:15
MrBeast
Рет қаралды 195 МЛН
Why 4d geometry makes me sad
29:42
3Blue1Brown
Рет қаралды 826 М.
Spain Math Olympiad | A Very Nice Geometry Problem
8:45
Math Booster
Рет қаралды 6 М.
Not as easy as it looks - A challenging geometry problem
6:04
Quant circle
Рет қаралды 778
Circle Theorems - GCSE Higher Maths
13:53
1st Class Maths
Рет қаралды 480 М.
Find the length X | A Nice Geometry Problem | 2 Methods
11:15
Math Booster
Рет қаралды 883
Can You Find the Radius of the Circle? | Quick & Simple Tutorial
9:15
Kaprekar's Constant
9:44
Prime Newtons
Рет қаралды 1,2 МЛН
Find the missing area | A Very Nice Geometry Problem
10:26
Math Booster
Рет қаралды 9 М.