Math Olympiad | A Very Nice Geometry Problem

  Рет қаралды 259,925

Math Booster

Math Booster

Күн бұрын

Пікірлер: 108
@giuseppemalaguti435
@giuseppemalaguti435 5 ай бұрын
A=(5+a)a/2..(...a=(5-a)tg30...,a=5(√3-1)/2...)...A=25/4
@TuncerOzksa
@TuncerOzksa 2 ай бұрын
BE= 2x (2x)^2= x^2 + (5-x)^2 4x^2= x^2 + 25 - 10x +x^2 2x^2 + 10x= 25 2(x^2 + 5x)= 25 A (ABCD) = (x+5)x/2 2A= x^2 + 5X 2(2A)= 25 A= 25/4 The question asks us for the area. There is no need to find the value of X, no need for roots and/or trigonometry. Trigonometry is only needed for Pythagoras. If we see that 2A is equal to x^2 + 5x, the answer is already found.
@jaimeruiz4722
@jaimeruiz4722 3 ай бұрын
6.25 is the correct answer but I solved it in a simpler way using the tangent function instead of building squares. I constructed a big rectangle triangle by prolonging the opposite side and the hypotenuse, and then found the area of the small triangle that will be reduced from the area of the big triangle. Very simple.
@ronaldravinder1960
@ronaldravinder1960 2 ай бұрын
That s the no hassle way..this was way too long!
@Freedom-of-Thought
@Freedom-of-Thought 2 ай бұрын
triangle 30 60 90, the line 1:(3^0.5):2 {X+[X/(3^0.5)]}(3^0.5) = 5 X = 2.5(3^0.5)-2.5 X^2 + (X^2)(3^0.5)/2 = X^2[1+(3^0.5)/2] = 6.25 囗ABCD = 6.25
@logicalsolutions73
@logicalsolutions73 3 ай бұрын
An easier way to calculate would be: Let x be the equal sides. Drop a vertical line from the top intersection of slanted line and horizontal line. Length of this line is x. If y is the slanted line, then y=2x (as sin(30°)=0.5) (5-x^2)+x^2=y^2 (Pythagoras theorem) Or (5-x^2)+x^2=4x^2 x^2+5x=25/2 Area = x^2 + ½x.(5-x) = (x^2 + 5x)/2 =(25/2)/2=25/4
@gelbkehlchen
@gelbkehlchen Ай бұрын
Solution: E = point exactly below B. AB = AD = BE = x BE/EC = tan(30°) = 1/√3 ⟹ x/(5-x) = 1/√3 |*(5-x) ⟹ x = 1/√3*(5-x) ⟹ x = 5/√3-x/√3 |+x/√3 ⟹ x+x/√3 = 5/√3 ⟹ (x*√3+x)/√3 = 5/√3 |*√3 ⟹ x*(√3+1) = 5 |/(√3+1) ⟹ x = 5/(√3+1) ⟹ Area of ​​ABCD = area of ​​square ABED + area of ​​triangle BCE = x²+x*(5-x)/2 = [5/(√3+1)]²+5/(√3+1)*[5-5/(√3+1)]/2 = 6.25
@user-AlexeyKozhedub
@user-AlexeyKozhedub 2 ай бұрын
Right side length is x. sin(30°)=1/2 cos(30°)=sqrt(3)/2 Height is x/2. S = (x/2)^2 + (x/2)*x*sqrt(3)/2/2 S = x^2/4*(1+sqrt(3)/2) 5 = x/2 + x*sqrt(3)/2 x = 10/(1+sqrt(3)) S = 100/4/(1+sqrt(3))^2*(1+sqrt(3)/2) S = 25*(1+sqrt(3)/2)/(4+2*sqrt(3)) S = 25/4*(1+sqrt(3)/2)/(1+sqrt(3)/2) S = 25/4 = 6.25 That's all. I solved before listening.
@abualicanada
@abualicanada 2 ай бұрын
I have solved it in one operation using the sin law: Sin60/(5-x)=sin30/x We get x=1.83 We replace in area formula A=x(5-x)/2 +x^2= 6.25
@bpark10001
@bpark10001 4 ай бұрын
The simpler way to solve for X is to in 30/60/90 triangle, base leg is X√3. So X + X√3 = 5.
@elenaokon2736
@elenaokon2736 5 ай бұрын
It is easier to complete the trapezoid to the triangle with angles "30-6--90", and then consider the similar triangles. From this it is easy to find the vertical side of the triangle and then the "x".
@fierabras1
@fierabras1 4 ай бұрын
shortest path [(5+x)x]/2: trapezoid area
@RealQinnMalloryu4
@RealQinnMalloryu4 5 ай бұрын
(5)^2=25 180°ABCD/25 =7.5 (ABCD ➖ 7ABCD+5).
@酸我的都是車力巨人
@酸我的都是車力巨人 2 ай бұрын
trigonometric functions,y=1、x=3^(0.5)、r=2, a=?->b1=b-a=5-a,c=(a^2+b1^2)^(0.5)=(a^2+(5-a)^2)^(0.5)=2a ->(25-a^2+a^2)^(0.5)=2a ->5=2a ->a=2.5 ->b=7.5^(0.5),c=5
@murdock5537
@murdock5537 5 ай бұрын
φ = 30° → sin⁡(3φ) = 1; ∎ADEB → AB = BE = DE = AD = a ∆ BEC → CE = 5 - a; BE = a ECB = φ → sin⁡(φ) = 1/2 → cos⁡(φ) = √3/2 → tan⁡(φ) = sin⁡(φ)/cos⁡(φ) = √3/3 = a/(5 - a) → a = (5/2)(√3 - 1) → area ABCD = a^2 + (a/2)(5 - a) = 25/4
@joegillian6781
@joegillian6781 5 ай бұрын
EからBCに下ろした垂線の足をFとする。 BE=a →BF=a/2 EF=b →EC=2b △BEC = 4×△BEF △BEFを□ADEBの周りに1つずつ付けると、1つの大きな正方形になり、その1辺の長さは a/2 +b すなわち、求める面積S=(a/2+b)^2 ここでDC=a,EC=2b なので a+2b=5 → a/2+b=5/2 よって S=(5/2)^2=25/4
@kateknowles8055
@kateknowles8055 4 ай бұрын
I enjoy this way of seeing the situation. I suppose BF is 1/3 of CF , to provide material for 4. times BEF to equal BEC and reshape to build the large square. But it is raw in my mind.
@toninhorosa4849
@toninhorosa4849 5 ай бұрын
I solved like this: From point B we draw a line parallel to line AB until it reaches line DC and mark point E. Square ABDE is formed on the left and triangle BCE on the right. The question ask the Trapezoid ABCD area = ? AB = AD = DE = BE = a DC = 5 ∆BCD is a right triangle. Angle C = 30° Angle E = 90° Angle B = 60° BE = a CE = 5 - a BC = 2a (in right triangle: hypotenuse is twice the shorter side) Applying Pythagoras: (2a)^2 = a^2 + (5 - a)^2 4a^2 = a^2 + 25 - 10a + a^2 2a^2 + 10a - 25 = 0 a =(-10+-√(100 - 4*2*(-25))/4 a = (-10+-√300)/4 a = (-10 +-10√3)/4 a1 = (-10 - 10√3)/4 is negative number => rejected The other a = (-10 + 10√3)/4 a = 10(√3 - 1)/4 a = 5(√3 - 1)/2 a^2 = [5(√3 - 1)/2]^2 a^2 = (25(2 - √3))/2 5a = 5*5(√3 -1)/2 5a = 25(√3 - 1)/2 Trapezoid area = (1/2)*(B+b)*h = (1/2)* (5+a)*a (1/2)* (a^2 + 5a) = (1/2)*(25(2-√3)/2) + (25(√3-1)/2) = Área = 25*(2 - √3 + √3 - 1)/4 Área = 25*(1)/4 Area Trapezoid = 25/4 Area Trapezoid = 6,25 unit^2
@oahuhawaii2141
@oahuhawaii2141 3 ай бұрын
A, the area of the trapezoid, is the height times the average width. That is, add the top and bottom segments, divide by 2, multiply by height. You use x as the common segment length that matches the height and the top and left segments. Thus, A = x*(x+5)/2 . There's no need to find the area of each part (square and triangle) to add later. There's no need to find all the segment lengths, as only x is needed. To find x, use the given angle, trigonometry, and the labelled sides of the triangle. tan(30⁰) = x/(5-x) = 1/√3 √3*x = 5-x (√3+1)*x = 5 x = 5/(√3+1) = 5*(√3-1)/2 A = [5*(√3-1)/2]*[5*(√3-1)/2 + 5]/2 = (5/2)*[√3-1]*(5/2)*[√3-1 + 2]/2 = (25/8)*[√3-1]*[√3+1] = (25/8)*2 = 25/4
@quigonkenny
@quigonkenny 5 ай бұрын
Let DA = AB = s. Drop a perpendicular from B to E on CD. As ∠ADE = ∠BAD = 90°, and by construction so do ∠DEB and ∠EBA, and as DA = AB = s, then DE and EB also equal s and ADEB is a square. As ∠ECB = 30° and ∆BEC is a right triangle, then BE/EC = tan(30°). Let EC = x. BE/EC = tan(30°) s/x = 1/√3 x = √3s DC = DE + EC 5 = s + x = s + √3s s = 5/(√3+1) s = 5(√3-1)/(√3+1)(√3-1) s = 5(√3-1)/(3-1) = 5(√3-1)/2 Trapezoid ABCD: Aᴛ = h(a+b)/2 Aᴛ = s(s+5)/2 Aᴛ = (5(√3-1)/2)(5(√3-1)/2+5)/2 Aᴛ = (5(√3-1)/2)((5√3-5+10)/2)/2 Aᴛ = (5(√3-1)(5√3+5)/4)/2 Aᴛ = 25(√3-1)(√3+1)/8 Aᴛ = 25(3-1)/8 = 50/8 = 25/4 sq units
@oahuhawaii2141
@oahuhawaii2141 3 ай бұрын
This violates precedence rules; it's bad form: s = 5(√3-1)/(√3+1)(√3-1) It should be fixed as either of the next 2 lines: s = 5*(√3-1)/(√3+1)/(√3-1) s = 5*(√3-1)/((√3+1)*(√3-1)) Avoid implied multiplication.
@sarantis40kalaitzis48
@sarantis40kalaitzis48 5 ай бұрын
BE=1/2 of BC hypotinuse so BC is double of opposite perpendicular side so BC=2x. Then PYthagorean Theorem is giving (2x)^2= x^2+(5-x)^2 so 4x^2=x^2+5^2+x^2-2*5*x so 2x^2+10x-25=0 10x=0 so x= (-10+ -sqrt300)/4= (-10+ -10*sqrt3)/4 = (-5+ -5*sqrt3)/2 x=(-5-5*sqrt3)/2 < 0 REJECTED or x= (5*sqrt3-5)/2 >0 ACCEPTED. Finally we have the Trapezioum(Trapezoid) ABCD with Big base B.B.=DC=5., Small Base b=AB=x=5*(sqrt3-1)/2 and Height h=AD=x= 5*(sqrt3-1)/2 The type of Area of Trapezoids is (1/2)*(B.B.+b)]*h = (1/2)*[(5+5*(sqrt3-1)/2]* [5*(sqrt3-1)/2] = (1/2)*5*(sqrt3+1)/2* [5*(sqrt3-1)/2] =( 25/8)*[(sqrt3)^2-1^2]= (25/8)*(3-1)=(25/8)*2=25/4=6.25 square units.
@oahuhawaii2141
@oahuhawaii2141 3 ай бұрын
Skip all the messy work for squares and square root of the Pythagorean Theorem. Use tan(30⁰) = 1/√3 = opposite/adjacent .
@sarantis40kalaitzis48
@sarantis40kalaitzis48 3 ай бұрын
@@oahuhawaii2141 Of Course when you are in Math Olympiads time is valuable.Also many times Trigonometry is the short way or the only way. But i'm Geometry lover and i prefer Geometrical Methods.
@asvquickcalculations6712
@asvquickcalculations6712 13 күн бұрын
x/5-x=tan30 5/x=1+root3x=5/root3+1=(5root3-5)/2==5*0.732/2=5*0.366=1.83
@alaeddinemustapha8496
@alaeddinemustapha8496 5 ай бұрын
We can use a calculator to save some work with square roots
@oahuhawaii2141
@oahuhawaii2141 3 ай бұрын
Yes, but that's only approximate values. The final answer has no square root, and is in fact a fraction, 25/4 .
@kateknowles8055
@kateknowles8055 4 ай бұрын
Equal sides =x , making square of area x.x , base of triangle remaining= 5-x , then the hypotenuse = cos(30) /(5-x) and x will be equal to half hypotenuse because sin 30 degrees = 1/2 So there is an equation in x x = cos 30 /(5-x) x= root(3) /(2/2)(5-x)) , because cos 30 = (root 3)/2 squaring both sides x.x = 3/((5-x)(5-x)) x.x( (25-10x+x.x) =3 x.x.x.x-10x.x.x.+25x.x -3 =0 is not nice. Trying extending by reflecting in the line which is 5 across: Now twice the area is a rectangle of 2x.x and an equilateral triangle. If you do not like where your calculations lead then check for error or try a dfferent approach. We use the symmetry to deduce the equilateral triangle . The length of each side is BC, which will be 2x That area will be x times sqrt(3) We get back by halving back to ABCD and I am just at 7 minutes into the lesson. so I am replaying the seventh , eighth and ninth minutes, to get to x = (5)/ ( root(3)+1) and understand the solution. Admission that the lesson is very necessary. Thank you.
@oahuhawaii2141
@oahuhawaii2141 3 ай бұрын
There's no need to go through the trouble of finding the hypotenuse, by dealing with the squares and square root for the Pythagorean Theorem. Just use the tangent function. tan(30⁰) = 1/√3 = x/(5-x) 5-x = √3*x 5 = (√3+1)*x x = 5/(√3+1) = 5*(√3-1)/2 The area of the trapezoid is x*(x+5)/2 . Plug in x and simplify to get 25/4 .
@oahuhawaii2141
@oahuhawaii2141 3 ай бұрын
FYI, your formula for the hypotenuse is wrong. NB: Try to use standard symbols and characters in your work. Choose the ones accepted by most software, including programming languages and math tools. For multiplication, use "*". Avoid implied multiplication, as variable names can be longer than 1 character. For example, "GET" may mean "General Excise Tax" and not "G*E*T". For square root, be consistent and avoid mixing "root" and "sqrt". It's fine to use prefix "√" or infix "^.5" or "**(1/2)" , but add parentheses when precedence rules require them: x = (-b ± √(b² - 4*a*c))/(2*a) -1 = e^(i*π*(2*k+1)) , i = √-1 , k ∈ ℤ Also, use the "⁰" symbol for angles in degrees. You can use Copy & Paste to save the useful symbols in a text file, which you can later reference in forming your new comments. You can get the symbols from here, or even do web searches for math fonts.
@Fan-MingHung
@Fan-MingHung 3 ай бұрын
If you know BE:EC:BE=1:2:√3 and trapezoid area formula, you can totally solve the quiz in mind.
@devondevon4366
@devondevon4366 5 ай бұрын
25/4 or 6.25 Answer another approach Let the side of the trapezoid = n, then the height also =n Hence, the area of the trapezoid in terms of n is (n+5)n/2 = n^2+ 5n)/2 Draw a perpendicular line to form a square and a 30-60- 90 right triangle, then n + sqrt 3 n = 5 since 60 degrees corresponds to sqrt 3 n sqrt 3n = 5-n 3n^2 = 25 + n^2 -10n 2n^2 + 10n = 25 n^2 + 5n = 12.5 Let's make the above equation similar to the area of the trapezoid in terms of n, which is (n^2 + 5n)/2 (see above) by dividing both sides by 2 Hence3, n^2 + 5n =12.5 becomes (n^2 + 5n)/2 = 12.5/2 6.25 Answer
@oahuhawaii2141
@oahuhawaii2141 3 ай бұрын
You have a typo: (n+5)n/2 = n^2+ 5n)/2
@devondevon4366
@devondevon4366 3 ай бұрын
@@oahuhawaii2141 It appears I have (n^2 + 5n)/2 without the left bracket. Thank you
@HimansuKumarDas-c8e
@HimansuKumarDas-c8e 4 ай бұрын
(AB+CD)/2× perpendicularAD=area
@ManojkantSamal
@ManojkantSamal 5 ай бұрын
Draw perpendicular from the vertex B to DC, Which will intersect DC at E Let AD=AB =BE =X So, CE =5-X In triangle BEC tan30=BE/EC=1/*3(*=read as root over ) 1/*3=x/(5-x) *3.x=5-x *3.x+x=5 X(*3+1)=5 X=5/(*3+1) The area of traizium = 1/2. (h). (AB+CD) =1/2.{(5/(*3+1)}.{5+.5/(*3+1)} =1/2.{5.(*3-1)/2}.{10+5(*3-1)}/2 =1/8.{5.(*3-1)}.{5(2+*3-1)} =1/8.25.{(*3+1)(*3-1)} =(1/8).25.2 =25/4=6.25
@oahuhawaii2141
@oahuhawaii2141 3 ай бұрын
You cannot write 6.25 because you use the "." to multiply. That means you're saying the answer is 150. Consider using "*" for multiply, and leave "." as the radix mark. Then, use "√" or "^.5" to indicate the principal square root.
@oahuhawaii2141
@oahuhawaii2141 3 ай бұрын
You also have "+.5" , but intended "+5" .
@АндрейПергаев-з4н
@АндрейПергаев-з4н 3 ай бұрын
Если вы не знаете что S(ABDC) =(AB+DC)*BE/2 Лучше не надо решать если вы не знаете простых действий
@ВикторШеховцов
@ВикторШеховцов 5 ай бұрын
OK! I have the same answer, only the earlier one has been reduced.
@cyruschang1904
@cyruschang1904 3 ай бұрын
[5/(1 + ✓3) + 5] [5/(1 + ✓3)] ÷ 2 = 25/(4 + 2✓3) + 25/(1 + ✓3) ÷ 2 = (50 + 25✓3)/(4 + 2✓3) ÷ 2 = 25/4
@prossvay8744
@prossvay8744 5 ай бұрын
Area=1/2(5√3-5)/2+5)(5√3-5)=25/4.
@tanmoymulo9574
@tanmoymulo9574 5 ай бұрын
X=5/2(√3-1),y=5√3/2(√3-1), Area=x^2+xy/2
@oahuhawaii2141
@oahuhawaii2141 3 ай бұрын
But you still haven't found the area.
@MrEbatista2
@MrEbatista2 5 ай бұрын
NÃO ACREDITO!!!!! O CARA FEZ DA MANEIRA MAIS DIFÍCIL DO MUNDO!!!!!! EU RESOLVI EM TRINTA SEGUNDOS PELO LADO DO QUADRADO!!!!!!!!!!!!!!!!!!!!!!. OLHE QUE É UMA OLIMPÍADA!!!!!!!!!!!!!!!!!!!!
@mehmetbagc9031
@mehmetbagc9031 Ай бұрын
it iş a simple. 3^1/2*X=5-X so X=1.8321. Area =((1,8321+5)*1,8321)/2=6,25
@CharlesChen-el4ot
@CharlesChen-el4ot 4 ай бұрын
X = 5/(1+3^1/2) = 25 / (4 + 2*3^1/2) = 6.25*(4-2*3^1/2)
@oahuhawaii2141
@oahuhawaii2141 3 ай бұрын
Nope, 3^1/2 = (3^1)/2 = 3/2 = 1.5 . You should use 3^(1/2) or 3^.5 or √3 or sqrt(3).
@oahuhawaii2141
@oahuhawaii2141 3 ай бұрын
Why did you write the following form? X = k = k² If X = k = k² , then X = k = 0, 1 .
@MinhTran-xy7hy
@MinhTran-xy7hy 4 ай бұрын
cảm ơn : Madame Teaches đã cho tôi biết cách giải bài toán quá sức đối với tôi!!!
@wasimahmad-t6c
@wasimahmad-t6c 3 ай бұрын
1.5×2=3)(3×1.5=4.5÷2=2.25+3=5.25
@michaeldoerr5810
@michaeldoerr5810 5 ай бұрын
The answer is 25/4. And also I think that you should have entitled this video as another, "You should be able to do this". And I will practice this AGAIN because this involves one of the easiest geometric construction: the 30-60-90 triangle. I also guessed *almost* every step that you have shown. And yet I feel like an idiot. I shall connect that to other problems on your channel ans other channels!!!
@imetroangola17
@imetroangola17 5 ай бұрын
Be grateful for the videos posted on this channel! Stop criticizing! If you want difficult questions, download the tests from the International Mathematical Olympiads and see if you can understand at least one statement
@oahuhawaii2141
@oahuhawaii2141 3 ай бұрын
You can use the shortcut for the area of the trapezoid, rather than finding the areas of the square and triangle, and summing them. This is something you should know.
@michaeldoerr5810
@michaeldoerr5810 3 ай бұрын
@@oahuhawaii2141 I did not know. I guess I stand corrected.
@oahuhawaii2141
@oahuhawaii2141 3 ай бұрын
@michaeldoerr5810: The area of any trapezoid is its height times the average of its widths. That is, add the top and bottom segments, divide by 2, and multiply by the height. It's easy to prove for a general trapezoid. In this case, the left side is vertical, and not sloping, so it's an even simpler case to prove. Duplicate the shape, flip it upside-down, put it on the right side of the original, and slide it over so both slopes meet. You've got a rectangle of height x and width (x+5). Its area is twice the area of the original shape, making A = x*(x+5)/2 .
@michaeldoerr5810
@michaeldoerr5810 3 ай бұрын
@@oahuhawaii2141 I thought Math Booster tried a more subtle method than that. That was why I sounded obtuse.
@clementchiu1315
@clementchiu1315 4 ай бұрын
We know that ∆BCD is a right triangle. Angle C = 30° ABDE is a square. tan30℃ = 1 / √3 → BE / EC = x / (5 - x) = 1 / √3 → x = 5 / (√3 + 1)
@oahuhawaii2141
@oahuhawaii2141 3 ай бұрын
You used the wrong letter or order: ABE is the right triangle. ABED is the square.
@oahuhawaii2141
@oahuhawaii2141 3 ай бұрын
"tan30⁰C" doesn't make sense mathematically. We can state ∠C = 30⁰ and write tan(30⁰) = 1/√3 . tan(θ) uses θ that's an angle; 30⁰C is a temperature.
@clementchiu1315
@clementchiu1315 3 ай бұрын
Thank you very much. We know that ∆BCD is a right triangle. Angle C = 30° ABED is a square. tan30° = 1 / √3 → BE / EC = x / (5 - x) = 1 / √3 → x = 5 / (√3 + 1)
@oahuhawaii2141
@oahuhawaii2141 2 ай бұрын
@@clementchiu1315: You may be able to edit your original comment.
@紫瞳-w6t
@紫瞳-w6t 4 ай бұрын
Area= x*(5+x)/2,that would be easier to calculate.
@macosta1974
@macosta1974 3 ай бұрын
Se resuelve de un modo más fácil y rápido con trigonometría.
@guillermotaningco9930
@guillermotaningco9930 3 ай бұрын
Why not use logarithmic table for easy calculation
@oahuhawaii2141
@oahuhawaii2141 3 ай бұрын
There's no need for approximate values, when the expression can evaluated symbolically to resolve into a simple fraction. You don't need logarithms to compute 25/4 .
@is7728
@is7728 5 ай бұрын
(25√3 + 25) / 4
@oahuhawaii2141
@oahuhawaii2141 3 ай бұрын
Divide by (√3+1).
@adgf1x
@adgf1x 4 ай бұрын
=5(x/(5-x)=1/3^1/2=>3^1/2 x=5-x=>5/(1+3^1/2).ar=(5+×)x/2.
@mauriciolopezmoctezuma4676
@mauriciolopezmoctezuma4676 4 ай бұрын
No entiendo que dice: pero tengo un terreno así está para sacar el metro cuadrado no se cómo se hacer
@adgf1x
@adgf1x 2 ай бұрын
3.4×1.8=6.12
@jmlfa
@jmlfa 5 ай бұрын
BC * sin 30 = x BC * cos 30 = 5 - x >> tan 30 = x/(5-x) x = 1.829 ...
@oahuhawaii2141
@oahuhawaii2141 3 ай бұрын
Angles listed without "°" is in radians, not degrees. 30⁰ = π/6 radians ≠ 30 radians Use "=" for equality, and "≈" for approximations: x = 5/(√3+1) = 5*(√3-1)/2 x ≈ 1.8301270...
@ristoleppanen302
@ristoleppanen302 5 ай бұрын
There was an error in the calculation.
@robertloveless4938
@robertloveless4938 4 ай бұрын
I thought so, too. But I thought certain color text I can't see well explained it.
@robertloveless4938
@robertloveless4938 4 ай бұрын
30/60/90. 1, 2, sq.rt. 3.
@oahuhawaii2141
@oahuhawaii2141 3 ай бұрын
You've got the order of the ratios wrong. Angles 30⁰ : 60⁰ : 90⁰ are related to the sides with relative lengths of 1 : √3 : 2 because the sine of those angles are 1/2 : √3/2 : 1 and the triangle can be scaled by a value, such as 2 . For the trapezoid here, the scale is 2*x , so the sides are x : √3*x : 2*x .
@adgf1x
@adgf1x Ай бұрын
ar=6.2445 sq.
@riccardogalo4540
@riccardogalo4540 2 ай бұрын
It is very easy to solve
@robertloveless4938
@robertloveless4938 4 ай бұрын
You lost me with purple writing. I don't see purple very well.
@wasimahmad-t6c
@wasimahmad-t6c Ай бұрын
5÷3=1.6666×1.6666=2.77777×2=5.5555555
@mustafagur8649
@mustafagur8649 Ай бұрын
Yamuğun alanı diye birşey var :)
@doxin9814
@doxin9814 4 ай бұрын
Final result: 750/98
@Bin668
@Bin668 4 ай бұрын
3.33333......
@mauriciolopezmoctezuma4676
@mauriciolopezmoctezuma4676 4 ай бұрын
No ví cuál es el resultado o no dió resultados
@oahuhawaii2141
@oahuhawaii2141 3 ай бұрын
Area = 25/4 = 6.25 .
@mikefoehr235
@mikefoehr235 4 ай бұрын
13.63
@oahuhawaii2141
@oahuhawaii2141 3 ай бұрын
6.25
@KrishnanMK-n4g
@KrishnanMK-n4g 4 ай бұрын
Itiseasy to compute the are a of the trape ziod parallel side s
@riyatmoko8241
@riyatmoko8241 3 ай бұрын
65
@grumpyramblings2361
@grumpyramblings2361 2 ай бұрын
it is easier to solve it why make it so complicated
@MustafaMust-cj6uq
@MustafaMust-cj6uq 3 ай бұрын
You are taking too long steps . Cut it short
@deryakuru6548
@deryakuru6548 3 ай бұрын
This can not be an olympiad question.Not very hard.simple question
@ang1221
@ang1221 Ай бұрын
Exactly!
@mikefoehr235
@mikefoehr235 4 ай бұрын
TAN= O/A....TAN 30= x÷5
@oahuhawaii2141
@oahuhawaii2141 3 ай бұрын
tan(30⁰) = 1/√3 = x/(5-x)
@ioannisimansola7115
@ioannisimansola7115 4 ай бұрын
Very easy , typical , I am not impressed
@劉益安-h8s
@劉益安-h8s 5 ай бұрын
x/(5-x)=1/√3 2x^2+10x-25=0 x^2+5x=25/2 Area=x(5+x)/2=25/4----over
@ghulamshabbir2670
@ghulamshabbir2670 4 ай бұрын
Answer is not 6.25 your calculation is totally wrong the answer is 9.37
@oahuhawaii2141
@oahuhawaii2141 3 ай бұрын
You're off by 50%. You have an extra factor of 3/2 in your calculations.
Japan Math Olympiad | A Very Nice Geometry Problem
13:32
Math Booster
Рет қаралды 6 М.
Правильный подход к детям
00:18
Beatrise
Рет қаралды 11 МЛН
Une nouvelle voiture pour Noël 🥹
00:28
Nicocapone
Рет қаралды 9 МЛН
Support each other🤝
00:31
ISSEI / いっせい
Рет қаралды 81 МЛН
Solving the hardest question of a British Mathematical Olympiad
11:26
MindYourDecisions
Рет қаралды 769 М.
Ukraine l Very Nice Olympiad Math Radical Problem l m=?
16:04
Math Master TV
Рет қаралды 3,7 М.
Poland Math Olympiad | A Very Nice Geometry Problem
13:29
Math Booster
Рет қаралды 17 М.
Japanese | A Nice Algebra Simplification | Math Olympiad
14:14
Math Hunter
Рет қаралды 31 М.
The SAT Question Everyone Got Wrong
18:25
Veritasium
Рет қаралды 14 МЛН