Really wish these videos did not end 5 years ago. They are very good.
@jpdemont7 жыл бұрын
There are quite a few playlists on KZbin devoted to Modern Algebra but this is the best. Thank you so much for making and sharing this.
@vigneshjothilingam76247 жыл бұрын
Wow what a explanation... you are also the one that make me love math
@Jkfgjfgjfkjg9 жыл бұрын
Great videos. I just wish you could produce new videos as fast as my Abstract Algebra course moves... Thank you
@soklylorn76652 жыл бұрын
These videos are so helpful. Thank you very much.
@Mannu_813 жыл бұрын
Your explanation and your voice both are fabulous.
@samchau34765 жыл бұрын
Please make abstract videos on Isomorphisms, Rings and Integral Domains. And more videos on how to get hold of one's intuition for making proofs. Most students suck at proofs and profs seem to think we should be able to do this shit or run after them all day
@vismayanm2399 Жыл бұрын
It is an really useful video.... thankyou sir 😊
@karthikaa24117 жыл бұрын
So clear and interesting. I just wish you could produce new videos Abstract Algebra.
@learnifyable7 жыл бұрын
I do plan on making more. I just wish I had some more free time!
@michaelturkson36932 жыл бұрын
very very inspiring. thank you so much Sir
@jacklinesalome3753 Жыл бұрын
You make me understand this course
@dipankardutta78239 жыл бұрын
it was clear , dats y attractive n not boring . well done .
@malcolmlamya8770 Жыл бұрын
Really good, ❤️🙏
@juanjaimescontreras17985 жыл бұрын
Not sure if my professor would accept a verbal “ yes it is associative “.
@nugusujemal231710 ай бұрын
THANKYOU SO MUCH!!
@11hitmanDagenius9 жыл бұрын
So clear and interesting ! thanks a lot for such videos ! Group theory has lot of applications right? I noticed it has lot of importance in other areas of mathematics . For example, there is an elegant proof of Fermat's Little theorem using abstract algebra !
@learnifyable9 жыл бұрын
+Devesh Sawant Yes! It also has applications in physics (Lie groups) and chemistry (point groups).
@valeriereid233728 күн бұрын
Thank you so very much
@retamililu Жыл бұрын
Mr. learnifyable thank you very much , but how we can get this book or pdf
@milliekim50724 жыл бұрын
Thank you so much, sir!
@ardrajithendran93032 жыл бұрын
Thank you ❤️
@eslamababneh70944 жыл бұрын
Great . Can you make videos about binary operations .please
@iaktech10 жыл бұрын
Great! Keep Making Such Videos!
@learnifyable10 жыл бұрын
I definitely plan on making more. I'm glad to hear that you enjoy them!
@diribaaboma83413 жыл бұрын
Thank you so much.
@hamzarana78057 жыл бұрын
Very helpful......thanks
@ivankristoffergamilla59482 жыл бұрын
In 8:25 why is it groups when you cannot have inverse of 2 it should have a value of -2 right to satisfy the inverse property?
@xiaoboyali79068 жыл бұрын
It is really helpful!
@cavelinguam64443 жыл бұрын
Awesome
@bigboss29988 жыл бұрын
thank you this was very helpful
@tayyabazeb92703 жыл бұрын
Plz how to prove that S4/V4 is isomorphic to s3
@Love_Hope_from_Above10 жыл бұрын
Mr. Learnifyable: Another fine video on subgroups. I really like the examples and your teaching style is easy to understand. Will you be producing videos on cyclic groups, generators of a group/subgroup, cosets, permutation groups, etc. in the near future? You are a marvelous communicator! > Benny Lo California 2-17-2014
@learnifyable10 жыл бұрын
Yes, I certainly would like to make more videos. All of the topics that you mentioned are things I would like to cover.
@revanthreddy37903 жыл бұрын
At 7:54 what is it ? Four mod four is zero,I didn't get it.. could you please explain it more clearly 🌝
@davidnaray83983 жыл бұрын
The answer to mod is the remainder So 5/4 is 1 and 1 remainder, so 5 mod4 is 1 Because 4/4 is 1, being evenly divided, it has remainder 0 As such, 4mod4 is 0
@nossonweissman5 жыл бұрын
Question: How would I prove that for H1 != G and H2 != G, that H1 is not contained in H2?
@raybroomall83835 жыл бұрын
Without a definition of the operator != it is not clear what you mean, further if H1!=G then every element in G is in H! regardless of the operator !=. If H2!=G then every element in G is in H2!, therefore H1!=H2!. State that H1! = G and there n elements ksub 1 through ksub n-1 in G are in H1! therefore H1! is a proper subset of G. State that H2! = G and there n elements ksub 1 through ksub n-1 in G are in H2! so H2! is a proper subset of G state that e the identity element is in both H1! and H2!. So if there is an element in H2! that is not in H1! then there is some element r in H2! where e ! r is not in H1! k. But we said H1! =G then r is not in G and likewise cannot be in G because as we stated H2!=G So H1!=G=H2! ...qed
@rajeswaripadari85434 жыл бұрын
Please prove associative property
@rikkiflows38672 жыл бұрын
"not just the identity" So u mean, no trivial subgroups are including the identity? Sorry I just confused... I hope u noticed
@rikkiflows38672 жыл бұрын
I mean non trivial proper subgroups
@mohammedalzaben72063 жыл бұрын
this is one of those vids where you have to play it in x1.75 .....
@kniinortey314 жыл бұрын
You don't prove anything. This is indeed associative without a prove.