This is a great topic! Thanks for presenting it so nicely! Well spoken and visualized! 💪
@arp_ai3 жыл бұрын
Thank you Letitia!
@manavmadan7933 жыл бұрын
Great Video, But using a small test set for QA should be done carefully as with time model can over-fit on those datasets.
@bakrianoo3 жыл бұрын
مميز كالعادة. بالتوفيق يا رجل
@katnoria3 жыл бұрын
Nicely explained Jay💯. I look forward to more of these
@JourneyMindMap2 жыл бұрын
Good One. Thanks
@SreeramAjay3 жыл бұрын
Your videos, contents and explanations are really good. Thanks for making quality content. It will be more nice, if you speak with same pitch as a start till the end of the sentence. Because words at the end of the sentences are low in volume. Thanks again for the great videos
@ramandutt36463 жыл бұрын
This is a very interesting approach that can be extended to vision models as well!
@arp_ai3 жыл бұрын
Absolutely!
@arhumz15732 жыл бұрын
Jay, are you aware of any other code examples of these tests?
@arp_ai2 жыл бұрын
The HATECHECK dataset present a test suite for hatespeech checking github.com/paul-rottger/hatecheck-data
@haftamuhailu25162 жыл бұрын
What a great presentation. Can I say Behavioral testing is somehow similar to Metamorphic testing in ML-Based Systems?
@saurabhatwipro2 жыл бұрын
Can same concepts be applied to supervised models .. like regression or classification models?
@VaibhavPatil-rx7pc3 жыл бұрын
Great master
@af121x3 жыл бұрын
Thank you so much for the nice expanation.
@jsnctl3 жыл бұрын
Really cool video Jay. Have you come across any equivalent approaches for tabular data?
@arp_ai3 жыл бұрын
Not yet, but one should be able to devise tests from their domain knowledge
@oosmanbeekawoo3 жыл бұрын
What should I get from this? That AI in Natural Language Processing is still in its infancy?? Have you heard about Duolingo. I need to know whether AI can successfully be implemented in Language Learning. It seems to me Duolingo corrects homework based on the order of the tiles. Gives you [boy] [am] [I] [a] (which he reads as [4] [2] [1] [3]. Just expects a correct order.) [I] [am] [a] [boy] >>[1] [2] [3] [4] That explains why (when it asks you to type) " I am a boy " is wrong but " I am a boy. " is correct! Just because of a dot! Sometimes it penalises FOR writing a dot. I'm guessing it checks the database for the exact sentence as opposed to language recognition.