For those curious, to justify changing the limit with the integral we need to prove uniform convergence of the inside function to the piecewise defined sin(x) and cos(x) function. This is actually not all that hard. Call the inside function f_n and the limit function f. In the video pointwise convergence is shown, but we will show uniform convergence. First note that the uniform norm (the L^infinity norm) of f_n - f will clearly just be equal to f_n(pi/4) - f(pi/4). We can show this by taking derivatives and maximizing this function if we want to be rigorous, but I think it's decently obvious. Now we just need to show that the limit as n goes to infinity of f_n(pi/4) - f(pi/4) is 0. This is a fairly routine limit. It is limit as n to infinity of ((1/sqrt2)^n + (1/sqrt2)^n)^(1/n) - 1/sqrt2 = limit... 2^(1/n - 1/2) - 1/sqrt2 = 1/sqrt2 - 1/sqrt2 = 0 Therefore we have uniform convergence and we can switch the integral with the limit.
@blackpenredpen4 жыл бұрын
Thanks!! This is great!
@leefisher44184 жыл бұрын
Dominated convergence theorem applies (sin^n(x) + cos^n(x))^n < 3 which is L^1 on [0,1]
@paulluap33834 жыл бұрын
Seems strange to me to go with uniform convergence in this case. Lebesgue's dominated convergence theorem will be more suitable and way more easier to use. You also can use Monotone convergence theorem in such cases.
@paulluap33834 жыл бұрын
Oh well, I thought about uniform convergence of an integral but then read your comment again. Uniform convergence of the function is great. The fact that you can swap integral and limit for uniform convergent sequence of functions is actually can be proved by using Lebesgue's dominated convergence theorem
@jewlez89154 жыл бұрын
@@paulluap3383 that would be a huge overkill to prove it like that. its literally a one line prove for the Riemann integral, which bprp is using here. No need for Lebesgue theory at all
@SlimThrull4 жыл бұрын
Blackpenredpen: "As always pause the video and try this for yourself." Me: "Oh hell, no!"
@markobavdek94504 жыл бұрын
exactly
@vivada26673 жыл бұрын
what am i looking at 😐
@youkaihenge58924 жыл бұрын
Limit + Integral = Lintegral!
@damianmatma7084 жыл бұрын
Limtegral ;)
@itachi63364 жыл бұрын
.
@jevinliu46584 жыл бұрын
Line + Integral = Linegral
@Prxwler4 жыл бұрын
L'Hintegral
@georgepeterson26554 жыл бұрын
Just watch this Math channel... Very impressive kzbin.info/door/ZDkxpcvd-T1uR65Feuj5Yg
@integralboi29004 жыл бұрын
‘Please pause the video and try this first’ Do you expect me to be able to do this?
@angelmendez-rivera3514 жыл бұрын
You should at least try it, it should not be too difficult if you know a few trig identities or some complex number algebra.
4 жыл бұрын
@@angelmendez-rivera351 That was the first idea I had to tackle the problem but ended up doing the same as done in the video. Could you give some advice on using complex numbers to solve that?
@joaopaulorangel10104 жыл бұрын
Strange, i found sqrt(2)/2
@itachi63364 жыл бұрын
I haven't been taught this
@blackpenredpen4 жыл бұрын
Do I look half an year younger?
@blackpenredpen4 жыл бұрын
Yes, bc this was filmed in December 2019
@arjunswayamkumar25074 жыл бұрын
@@blackpenredpen WOAhhh
@akshatprakash57474 жыл бұрын
Then why didn't you upload it then?
@blackpenredpen4 жыл бұрын
Bc I took a break from YT and didn’t upload anything for 2.5 months.
@eliardosoarescoelho43334 жыл бұрын
@@blackpenredpen note 100000000000000.... integration is my live kkkk
@thomaskim53943 жыл бұрын
You have to show that you can interchange the order of limit and integral. If the function convergence uniformly, then you can interchange the order of the finite integral and limit.
@steve28174 жыл бұрын
Next Video Proof of lim n->inf (a^n+b^n)^(1/n) = max(a,b) for positive a and b... maybe
@julespirony87483 жыл бұрын
The reasoning misses a big thing : the proof of uniform convergence !!!! (without it you can't justify that the limit of the integral equals integral of the limit [integral of cosine + integral of sine]. Moreover the justification for value of the limit is dubious (for the first case if you reason like this then the limit of (1+1/n)^n is equal to 1 for exemple (while the right value is e)). You have to use the exponential form of the exponent 1/n (for both actually).
@aashsyed12773 жыл бұрын
Yes but it is okay in this case 👌
@piyushabhay4 жыл бұрын
This is same as saying is your signature statement...I love the way u connect the dots and explains every dimension of specific topic...I salute u from the bottom of my heart
@MacheTheFerret4 жыл бұрын
Back to the big board, I see. Stay safe, my guy.
@rebellio6194 жыл бұрын
*yellow guy
@washieman24454 жыл бұрын
@@rebellio619 bruh
@GrouchierThanThou4 жыл бұрын
Another way to think about that limit is that for any x, as n goes to infinity, the expression sin(x)^n + cos(x)^n will be dominated by whichever is the biggest of the two terms for that x. Therefore, if sin(x) != cos(x) the limit equals max(sin(x), cos(x)). At sin(x) = cos(x) you'll get a discontinuity though, as in that case the limit equals 2sin(x) instead. Of course, because of the integration, that discontinuity can just be ignored in this video.
@zygoloid4 жыл бұрын
At sin x=cos x, you get (sin^n x + cos^n)^(1/n) = (2sin^n x)^1/n = 2^1/n sin x -> sin x, so there's no discontinuity.
@GrouchierThanThou4 жыл бұрын
@@zygoloid Yes, you're quite right. Thanks.
@georgepeterson26554 жыл бұрын
Just watch this Math channel... Very impressive kzbin.info/door/ZDkxpcvd-T1uR65Feuj5Yg
@felipelopes31714 жыл бұрын
Why not do it directly without the tangent? The expression inside the root is dominated by the power whose base is larger, since it goes to 0 slower as you take higher powers of n.
@turtlellamacow4 жыл бұрын
Probably for pedagogical reasons, since it reduces the problem to the basic limit laws. A similar example is (2n^2+n)/(n^2+n) -- we who are experienced can glance at this and see that the +n is irrelevant, but the "correct" way to show it is to rewrite it as (2 + 1/n) / (1 + 1/n) and then apply the limit laws.
@buddythompson52844 жыл бұрын
Yeah, I was thinking the same thing. Just show that for 0 to pi/4 the cos term dominates and for pi/4 to pi/2 the sin term dominates.
@poolmorosanacona19304 жыл бұрын
I just came to say thank you! I thought that I was never going to pass Calc II, this was going to be my third time on this course. But then I discovered your channel and it really helped me a lot, finally, I was understanding the topics and after a lot of your videos, I passed the course :)
@blackpenredpen4 жыл бұрын
Glad to hear and BIG YAY on your success!
@EnteiFire44 жыл бұрын
(x^n + y^n)^(1/n) where n tends to infinity is the infinity norm, which is equal to max(|x|, |y|). So this could be written as integral from 0 to pi/2 of max(cos(x), sin(x)) dx (we can remove the absolute value because sin and cos are positive between 0 and pi/2). We can easily find that max(cos(x), sin(x)) = cos(x) for x between 0 and pi/4, and max(cos(x), sin(x)) = sin(x) for x between pi/4 and pi/2, which gives our final integral.
@harendrayegr4 жыл бұрын
But what happens at pi/4? tan x =1.so under the root sign value becomes 2 which is not tan x raised to the power n which is 1.
@wowZhenek4 жыл бұрын
Point pi/4 is forgotten? It does give zero in the limit though, but probably should be mentioned
@lifeofphyraprun76014 жыл бұрын
Oh,so Spiderman is your patron.😂
@waitinblackout4 жыл бұрын
Quicker way is to simplify the integral by noticing cos(x)>sin(x) below π/4, thus the function can be replaced by (cos^n(x))^(1/n) = cos(x) when n goes to infinity. Same replacement with sin(x) above π/4.
@BrendEcasa4 жыл бұрын
can you do it with a^2 in front of sin^2 and b^2 in front of cos^2? just the integral
@craccocrai27784 жыл бұрын
Are you ever going to start a series on calculus 3?
@niyazkhan57894 жыл бұрын
Please try JEE advaced integral question
@nathanielhellerstein58714 жыл бұрын
Lim(n->1/0) ((x^n)+(y^n))^(1/n) = max(x, y)
@benjaminbrady23854 жыл бұрын
I'm curious how bprp solves this, haven't watched yet. Let me give my solution though, I recognise this as the L_infinity distance to the point (sin(x), cos(x)). For those who don't know, this will just be the supremum of the two (or whichever one is bigger). The layman's way to write this could be max(sin(x), cos(x)). This means we can split up the integral into two by integrating whichever is bigger on the interval and we get: Integral from 0 to pi/4 cos(x) dx + integral from pi/4 to pi/2 sin(x) dx (these are strictly positive on these intervals so we don't need to worry about absolute values ruining our day). These are easy enough, they both evaluate to sqrt(2)/2 so the answer is sqrt(2). Did I get it right?
@blackpenredpen4 жыл бұрын
Yes, you got it right!
@alexismiller23494 жыл бұрын
This was exactly my first thought!
@hamiltonianpathondodecahed52364 жыл бұрын
what do we mean by Linfinity distance sorry if it is a very stupid one
@piyushabhay2 жыл бұрын
Cos decreases from 0 to pi/4 but still he took cos instead of sin while integrating from o to pi /4 Why??? Please explain Thanks in advance
@TheOiseau2 жыл бұрын
@@piyushabhay It's not about whether cos decreases. It's about cos being _larger_ than sin on that interval. When you do the nth root of (a^n + b^n), whichever of a & b is largest will win (as n goes to infinity).
@malawigw4 жыл бұрын
Nice book tip! It looks very good
@petrie9113 жыл бұрын
The trig identity sin(x) = cos(pi/2 - x) shows that the integrand is symmetric about pi/4. So we can start by replacing the full integral by twice the integral from 0 to pi/4. This seems easier than trying to split the interval during the limit analysis.
@comingshoon27174 жыл бұрын
En este canal veo problemas más avanzados de todas las materias, por eso me gusta 💪👍 bien ahí amigo, aparte he aprendido bastante el inglés en matemáticas y cosas relacionadas 👍
@StevenPhD44 жыл бұрын
Mejor que unicoos o julio profe xd. Esos son un chiste comparado con estos problemas .
@comingshoon27174 жыл бұрын
Steven Chau see jaja
@TheSenator0074 жыл бұрын
For any natural number k the expression 1/sqrt(k) is equal to 1/k*sqrt(k). That rule makes adding terms containing 1/sqrt(k) easier. For example in this video at the end we had: 1/sqrt(2)+1/sqrt(2) which based on this rule is equal to 1/2*sqrt(2)+1/2*sqrt(2) which is easy to compute to be sqrt(2) I found this rule very helpful, but only after I had proven it I started really using it. The proof I wrote down went as follows: Given: k is a natural number To be proven: 1/sqrt(k) = 1/k*sqrt(k) Proof: 1/sqrt(k) = (1/sqrt(k))*1 = (1/sqrt(k))*(sqrt(k)/sqrt(k)) = sqrt(k)/(sqrt(k)*sqrt(k)) = sqrt(k)/k = 1/k*sqrt(k) q.e.d.
@sigmac304 жыл бұрын
So happy to see this board back ! But I prefer when you do not spoil the result at the beginning, it is so satisfying when a simple answer comes out of nowhere at the end !
@bollyfan13304 жыл бұрын
pi/4 should be included in first interval and not second one, since tan(pi/4) = 1, raising it to nth power is still just 1. adding the other 1 inside the n th root, you get the value as n tends to infinity of the n th root of 2, which is also 1, just like the rest of the values in the interval.
@walterpoelzing94124 жыл бұрын
You are an incredible talent. I have a Masters Degree and you keep me at the top of my game everyday.
@Kinghercules4 жыл бұрын
"Thats very nice!" 😄
@alexismiller23494 жыл бұрын
Can i just add that the integrand is basically the distance calulated in L_{infinity} norm of a point on the L_2 norm unite circle? It actually simplifies the problem because it just represents the max function :D
@-ANaveenBagade4 жыл бұрын
So happy to see the big board after a long time.
@iridium85624 жыл бұрын
3.10 is cancelling the root and the power possible in every case? Because for some limits it might not be possible
@ZackSussmanMusic4 жыл бұрын
This question was awesome!
@georgepeterson26554 жыл бұрын
Just watch this Math channel... Very impressive kzbin.info/door/ZDkxpcvd-T1uR65Feuj5Yg
@forklift17124 жыл бұрын
Your explanation that lim(x -> inf) ((tan x)^n + 1)^(1/n) = 1 when 0 inf)(1 + 1/x)^x and conclude that it is 1 and not e.
@burk3144 жыл бұрын
The difference there is that lim(x->inf) (1+1/x)^x is 1^infty which is an indeterminate form while lim(n->inf)((tan x)^n+1)^(1/n) is 1^0=1 and not indeterminate. Now maybe the way he worded it is not the best, but there's not really a problem here.
@winniethexiinwesttaiwan85784 жыл бұрын
the inside part equals to max(cos(x),sin(x)), so the division boundary is very clearly pi/4
@AhmedHan4 жыл бұрын
I can calculate it for n=2.
@hamza_alsamraee4 жыл бұрын
Great explanation!
@chessdominos4 жыл бұрын
I loved how you solved it. I reached the same conclusion by using the limit definition of e , exponential property and range of integration. I liked your better.
@georgepeterson26554 жыл бұрын
Just watch this Math channel... Very impressive kzbin.info/door/ZDkxpcvd-T1uR65Feuj5Yg
@chessdominos4 жыл бұрын
@@georgepeterson2655 Whaaaat!? That is impressive. Thank you so much. It looks fantastic.
@georgepeterson26554 жыл бұрын
@@chessdominos welcome
@thelightningwave4 жыл бұрын
I learned in my real analysis II course about norm and so our norm ||x||n= (sum from i =1 to m of (x sub i)^n)^1/n and so our usual norm is when n equals to two, which makes the infinity norm which is what black pen red pen went over is the basically equal to max{x sub 1, x sub 2..... x sub m}. (Please don't ask me to prove it, I really don't know how to prove that.) And he could have looked for the interval which cosine is the max which is [0, pi /4) and the interval which sine is the max which is (pi/4, pi/2] and then calculate the integral.
@SylComplexDimensional4 жыл бұрын
tan(pi/2) is sin(pi/2)/cos(pi/2) & cos(pi/2) computationally is a floating point number 6.1232e-17 therefore tan(pi/2) is defined as 16331239353195370. 🎄
@buzzfeedteen4 жыл бұрын
This channel makes me happier than it should
@sherlockjunior86124 жыл бұрын
This problem is a paid actor, explains how he solves everything!
@kingbeauregard4 жыл бұрын
What I like about this problem is, I am incapable of coming up with any intuitions about the original integrand, but after factoring out the cosine term I can pretty easily see what I'm looking at. And then, MUCH later, I can look back at the original function and almost understand it intuitively: since we're talking about infinities, only the sine term or the cosine term will be significant, while the other will diminish to irrelevance. What I'm saying is, I'm a little smarter after seeing this.
@gekkouga28284 жыл бұрын
It's interesting and amazing 😍😍(shocked and bewildered😂😤😲) to see how such a difficult and complex (not complex numbers) problem transformed into such easy question !!!!!! You're kidding me! 😁 I mean, look at that transformation !!!!!!!💖 Truly stunning !!!😃 BlackPenRedPen, you are awesome!💞💟💕💖💓
@mohammadfahrurrozy80824 жыл бұрын
I know right Im a highschooler ,learned calculus and this looks so amazing
@georgepeterson26554 жыл бұрын
Just watch this Math channel... Very impressive kzbin.info/door/ZDkxpcvd-T1uR65Feuj5Yg
@PureMathGuy4 жыл бұрын
I don't understand how you computed lim n->inf (tan^n(x) + 1)^1/n. If you take the limit inside there and compute it, then its similar to calculating e = lim n->inf (1 + 1/n)^n = 1^inf = 1 which is incorrect. So how do you justify this?
@adamrjhughes4 жыл бұрын
what about +c ??
@sinecurve99994 жыл бұрын
This problem reminds me of the infinity-norm. Lim{p->infinity} (sum_i(x_i^p))^(1/p) = max{x_i}
@prashantshukla60184 жыл бұрын
You should try and make videos of prmo previous year paper u can download the pdf from Google please
@eustacenjeru72254 жыл бұрын
Excellent reasoning
@divyt84464 жыл бұрын
Welcome to another episode off every thing bounces of our brain...
@yafqakhan39134 жыл бұрын
What happens if you differentiate under the integral sign with respect to n?
@Дмитрий-в2з1ч4 жыл бұрын
why u can switch the order of limits (limit and integral)? it needs proof
@georgepeterson26554 жыл бұрын
Just watch this Math channel... Very impressive kzbin.info/door/ZDkxpcvd-T1uR65Feuj5Yg
@OlympicMaths4 жыл бұрын
It was interesting. Regards, Blackpenredpen!
@criskity4 жыл бұрын
That's bizarre! I would have thought that an infinite power of a sine or cosine would look like a flat line of zero height with a blip of height 1 or -1 at every pi steps. So my intuition said the answer to this problem had to be zero.
@stephenbeck72224 жыл бұрын
That’s where the n-th root does a lot of work, raising all those little flat line parts up. Remember for 0
@cable47514 жыл бұрын
can you do the integral of the 5th root of tanx pls
@georgepeterson26554 жыл бұрын
Just watch this Math channel... Very impressive kzbin.info/door/ZDkxpcvd-T1uR65Feuj5Yg
@tomkerruish29824 жыл бұрын
Just use lim(a^n + b^n)^(1/n) = max{a,b} as n goes to positive infinity for nonnegative a,b.
@Mustapha.Math_at_KUSTWUDIL4 жыл бұрын
In this case, What will be the max?
@medmoufahim4 жыл бұрын
where the fountain is located please ? by the way you do a great job simpifying math (y)
@AbhayKumar-hb7il2 жыл бұрын
Why x is not equal to pi/4 in first interval itself bcuz exact one raised to power infinity is 1 and 1 is finite Plz explain sir
@edward_09093 жыл бұрын
你没说到为什么 极限号 可以 “穿入” 积分号内😥
@subhadeepsarkar56064 жыл бұрын
hey bprp, today i watched your simple setup video.i just wanted to ask which hard drive you used for storing your videos??
@georgepeterson26554 жыл бұрын
Just watch this Math channel... Very impressive kzbin.info/door/ZDkxpcvd-T1uR65Feuj5Yg
@subhadeepsarkar56064 жыл бұрын
@@georgepeterson2655 u can use big white board. It will be very good
@NovaWarrior774 жыл бұрын
Good stuff!
@gustavorc254 жыл бұрын
Very impressive but you can resolve: ∫(tan(x)^(1/n))dx=?
@georgepeterson26554 жыл бұрын
Just watch this Math channel... Very impressive kzbin.info/door/ZDkxpcvd-T1uR65Feuj5Yg
The integral sequence converges uniformly, so it's fine. He didn't justify it in the video, but we know it's true. It's almost trivial to prove, so any person watching should be able to gather that much.
@Dionisi04 жыл бұрын
@@angelmendez-rivera351 que no justifica los valores asignados en el momento de separar la integral en 2 partes, eso lo asume el, no signifca que sea correcto
@angelmendez-rivera3514 жыл бұрын
Zamir C No, te equivocas, él lo justificó en la sección previa. No es una asunción.
@egillandersson17804 жыл бұрын
Wow ! Your whiteboard grew up again !
@kallolmanna86644 жыл бұрын
If we chan the limit of the integral the it is possible.. that is twice the integral..
@rezamiau4 жыл бұрын
Great! Thanks
@insouciantFox4 жыл бұрын
For once thinking about it geometrically helped.
@Rahulsingh-lw8hk4 жыл бұрын
hi , can you please upload a video on visualising complex roots of a cubic equation graphically ?
@nuctang4 жыл бұрын
Whiteboard is back!
@blackpenredpen4 жыл бұрын
This was recorded back in December.. sorry
@mathadventuress4 жыл бұрын
Black pen red pen.... Blue pen Too much to process 🤪🤪
@Peter_19864 жыл бұрын
He also used a purple pen in some other video from maybe a couple years ago.
@mathadventuress4 жыл бұрын
@@Peter_1986 oh man...
@elizabethparnell47244 жыл бұрын
ooo yay big whiteboard!!
@tarunverma33354 жыл бұрын
Limit + integral = Limtegral
@sasoribi13414 жыл бұрын
nice potential😎
@UltimateGaminggaurang4 жыл бұрын
Hey! Can we solve using LOGARITHM??? Those properties make the calculations much more easier!!!!
@oussamalaaroussi54674 жыл бұрын
Hello, I was thinking why we forgot the +1 in the second case where tanx >=1 , and thanks
@dlevi674 жыл бұрын
Because tan(x) to the nth power when tan(x) > 1 goes to infinity, and infinity + 1 is still infinity, so at the limit we can neglect the 1 and you end up with nth root of [tan(x)]^n, i.e. tan(x). There's a fair amount of hand-waving in this one...
@joryjones68084 жыл бұрын
Watching this instead of preparing for calc 2 test tomorrow.
@georgepeterson26554 жыл бұрын
Just watch this Math channel... Very impressive kzbin.info/door/ZDkxpcvd-T1uR65Feuj5Yg
@joaopaulorangel10104 жыл бұрын
I found sqrt(2)/2
@joaopaulorangel10104 жыл бұрын
Oh, i Just saw my mistake
@miso-ge1gz4 жыл бұрын
what. This video is 4 years too advanced for me
@bandamkaromi4 жыл бұрын
Wow! Big Big Big Board.
@thedoublehelix56614 жыл бұрын
unjustified interchange of limits smh
@leefisher44184 жыл бұрын
you could apply bounded convergence theorem to interchanged the limit and integral.
@markuschen67294 жыл бұрын
I just have the same question. The proof of the interchangability of limit and integral is essential for the solution.
@ishrakhameem23134 жыл бұрын
3rd comment, love from Bangladesh 🇧🇩❤
@phythematics21884 жыл бұрын
Me also
@jochoa20094 жыл бұрын
Those small whiteboards stressed me out.
@mamadou30764 жыл бұрын
Blackpenredpen I've something for you Prove that x^2-y^2=3 has no solution in Q world
@willnewman97834 жыл бұрын
But 2^2-1^2=3
@mamadou30764 жыл бұрын
@@willnewman9783 yes sorry I did a mistake it is not "minus" but "plus" So the question is : Prove that x^2 + y^2 = 3 has no solution (so show that it is impossible) in the Q world
@8nagesh4 жыл бұрын
I am new to this and I am lost in jungle😀
@HardyPinto4 жыл бұрын
I could not resist to make a small python code that numerically calculate the integral (Euler's method) ###--- CODE BEGINS HERE import numpy as np import matplotlib.pyplot as plt #uses 10000 steps! k=10000 h=(np.pi/2)/k #stepsize! x=np.linspace(0,np.pi/2,k) #sweeps n from 1 to 998 for n in range(1,1000,2): y=((np.cos(x))**n+np.sin(x)**n)**(1/n) plt.plot(x,y) plt.axis([0,np.pi/2,0,1.5]) #Euler Integration here yi=np.sum(y*h) #Integral ei=np.abs(yi-2*np.sqrt(2)) #Absolute error ep= ei/yi*100 #relative error (percentage) print (f'{n:02d} | {yi:1.5f} | {ei:1.5f} | {ep:>8.5f} %') plt.show() ###--- CODE ENDS HERE
@coderdemo91694 жыл бұрын
Ohh no ☹️ 😔😟
@Charles_Reid4 жыл бұрын
Who thinks of these problems??!
@albertusventer28964 жыл бұрын
cos(0) = 1 not zero :)
@bengtbengt38504 жыл бұрын
I found it very annoying that you just interchanged the limits without even mentioning that it’s not a trivial thing.