Integral of (sin^n(x)+cos^n(x))^(1/n) as n goes to infinity

  Рет қаралды 56,435

blackpenredpen

blackpenredpen

Күн бұрын

Пікірлер: 199
@andrewhaar2815
@andrewhaar2815 4 жыл бұрын
For those curious, to justify changing the limit with the integral we need to prove uniform convergence of the inside function to the piecewise defined sin(x) and cos(x) function. This is actually not all that hard. Call the inside function f_n and the limit function f. In the video pointwise convergence is shown, but we will show uniform convergence. First note that the uniform norm (the L^infinity norm) of f_n - f will clearly just be equal to f_n(pi/4) - f(pi/4). We can show this by taking derivatives and maximizing this function if we want to be rigorous, but I think it's decently obvious. Now we just need to show that the limit as n goes to infinity of f_n(pi/4) - f(pi/4) is 0. This is a fairly routine limit. It is limit as n to infinity of ((1/sqrt2)^n + (1/sqrt2)^n)^(1/n) - 1/sqrt2 = limit... 2^(1/n - 1/2) - 1/sqrt2 = 1/sqrt2 - 1/sqrt2 = 0 Therefore we have uniform convergence and we can switch the integral with the limit.
@blackpenredpen
@blackpenredpen 4 жыл бұрын
Thanks!! This is great!
@leefisher4418
@leefisher4418 4 жыл бұрын
Dominated convergence theorem applies (sin^n(x) + cos^n(x))^n < 3 which is L^1 on [0,1]
@paulluap3383
@paulluap3383 4 жыл бұрын
Seems strange to me to go with uniform convergence in this case. Lebesgue's dominated convergence theorem will be more suitable and way more easier to use. You also can use Monotone convergence theorem in such cases.
@paulluap3383
@paulluap3383 4 жыл бұрын
Oh well, I thought about uniform convergence of an integral but then read your comment again. Uniform convergence of the function is great. The fact that you can swap integral and limit for uniform convergent sequence of functions is actually can be proved by using Lebesgue's dominated convergence theorem
@jewlez8915
@jewlez8915 4 жыл бұрын
@@paulluap3383 that would be a huge overkill to prove it like that. its literally a one line prove for the Riemann integral, which bprp is using here. No need for Lebesgue theory at all
@SlimThrull
@SlimThrull 4 жыл бұрын
Blackpenredpen: "As always pause the video and try this for yourself." Me: "Oh hell, no!"
@markobavdek9450
@markobavdek9450 4 жыл бұрын
exactly
@vivada2667
@vivada2667 3 жыл бұрын
what am i looking at 😐
@youkaihenge5892
@youkaihenge5892 4 жыл бұрын
Limit + Integral = Lintegral!
@damianmatma708
@damianmatma708 4 жыл бұрын
Limtegral ;)
@itachi6336
@itachi6336 4 жыл бұрын
.
@jevinliu4658
@jevinliu4658 4 жыл бұрын
Line + Integral = Linegral
@Prxwler
@Prxwler 4 жыл бұрын
L'Hintegral
@georgepeterson2655
@georgepeterson2655 4 жыл бұрын
Just watch this Math channel... Very impressive kzbin.info/door/ZDkxpcvd-T1uR65Feuj5Yg
@integralboi2900
@integralboi2900 4 жыл бұрын
‘Please pause the video and try this first’ Do you expect me to be able to do this?
@angelmendez-rivera351
@angelmendez-rivera351 4 жыл бұрын
You should at least try it, it should not be too difficult if you know a few trig identities or some complex number algebra.
4 жыл бұрын
@@angelmendez-rivera351 That was the first idea I had to tackle the problem but ended up doing the same as done in the video. Could you give some advice on using complex numbers to solve that?
@joaopaulorangel1010
@joaopaulorangel1010 4 жыл бұрын
Strange, i found sqrt(2)/2
@itachi6336
@itachi6336 4 жыл бұрын
I haven't been taught this
@blackpenredpen
@blackpenredpen 4 жыл бұрын
Do I look half an year younger?
@blackpenredpen
@blackpenredpen 4 жыл бұрын
Yes, bc this was filmed in December 2019
@arjunswayamkumar2507
@arjunswayamkumar2507 4 жыл бұрын
@@blackpenredpen WOAhhh
@akshatprakash5747
@akshatprakash5747 4 жыл бұрын
Then why didn't you upload it then?
@blackpenredpen
@blackpenredpen 4 жыл бұрын
Bc I took a break from YT and didn’t upload anything for 2.5 months.
@eliardosoarescoelho4333
@eliardosoarescoelho4333 4 жыл бұрын
@@blackpenredpen note 100000000000000.... integration is my live kkkk
@thomaskim5394
@thomaskim5394 3 жыл бұрын
You have to show that you can interchange the order of limit and integral. If the function convergence uniformly, then you can interchange the order of the finite integral and limit.
@steve2817
@steve2817 4 жыл бұрын
Next Video Proof of lim n->inf (a^n+b^n)^(1/n) = max(a,b) for positive a and b... maybe
@julespirony8748
@julespirony8748 3 жыл бұрын
The reasoning misses a big thing : the proof of uniform convergence !!!! (without it you can't justify that the limit of the integral equals integral of the limit [integral of cosine + integral of sine]. Moreover the justification for value of the limit is dubious (for the first case if you reason like this then the limit of (1+1/n)^n is equal to 1 for exemple (while the right value is e)). You have to use the exponential form of the exponent 1/n (for both actually).
@aashsyed1277
@aashsyed1277 3 жыл бұрын
Yes but it is okay in this case 👌
@piyushabhay
@piyushabhay 4 жыл бұрын
This is same as saying is your signature statement...I love the way u connect the dots and explains every dimension of specific topic...I salute u from the bottom of my heart
@MacheTheFerret
@MacheTheFerret 4 жыл бұрын
Back to the big board, I see. Stay safe, my guy.
@rebellio619
@rebellio619 4 жыл бұрын
*yellow guy
@washieman2445
@washieman2445 4 жыл бұрын
@@rebellio619 bruh
@GrouchierThanThou
@GrouchierThanThou 4 жыл бұрын
Another way to think about that limit is that for any x, as n goes to infinity, the expression sin(x)^n + cos(x)^n will be dominated by whichever is the biggest of the two terms for that x. Therefore, if sin(x) != cos(x) the limit equals max(sin(x), cos(x)). At sin(x) = cos(x) you'll get a discontinuity though, as in that case the limit equals 2sin(x) instead. Of course, because of the integration, that discontinuity can just be ignored in this video.
@zygoloid
@zygoloid 4 жыл бұрын
At sin x=cos x, you get (sin^n x + cos^n)^(1/n) = (2sin^n x)^1/n = 2^1/n sin x -> sin x, so there's no discontinuity.
@GrouchierThanThou
@GrouchierThanThou 4 жыл бұрын
@@zygoloid Yes, you're quite right. Thanks.
@georgepeterson2655
@georgepeterson2655 4 жыл бұрын
Just watch this Math channel... Very impressive kzbin.info/door/ZDkxpcvd-T1uR65Feuj5Yg
@felipelopes3171
@felipelopes3171 4 жыл бұрын
Why not do it directly without the tangent? The expression inside the root is dominated by the power whose base is larger, since it goes to 0 slower as you take higher powers of n.
@turtlellamacow
@turtlellamacow 4 жыл бұрын
Probably for pedagogical reasons, since it reduces the problem to the basic limit laws. A similar example is (2n^2+n)/(n^2+n) -- we who are experienced can glance at this and see that the +n is irrelevant, but the "correct" way to show it is to rewrite it as (2 + 1/n) / (1 + 1/n) and then apply the limit laws.
@buddythompson5284
@buddythompson5284 4 жыл бұрын
Yeah, I was thinking the same thing. Just show that for 0 to pi/4 the cos term dominates and for pi/4 to pi/2 the sin term dominates.
@poolmorosanacona1930
@poolmorosanacona1930 4 жыл бұрын
I just came to say thank you! I thought that I was never going to pass Calc II, this was going to be my third time on this course. But then I discovered your channel and it really helped me a lot, finally, I was understanding the topics and after a lot of your videos, I passed the course :)
@blackpenredpen
@blackpenredpen 4 жыл бұрын
Glad to hear and BIG YAY on your success!
@EnteiFire4
@EnteiFire4 4 жыл бұрын
(x^n + y^n)^(1/n) where n tends to infinity is the infinity norm, which is equal to max(|x|, |y|). So this could be written as integral from 0 to pi/2 of max(cos(x), sin(x)) dx (we can remove the absolute value because sin and cos are positive between 0 and pi/2). We can easily find that max(cos(x), sin(x)) = cos(x) for x between 0 and pi/4, and max(cos(x), sin(x)) = sin(x) for x between pi/4 and pi/2, which gives our final integral.
@harendrayegr
@harendrayegr 4 жыл бұрын
But what happens at pi/4? tan x =1.so under the root sign value becomes 2 which is not tan x raised to the power n which is 1.
@wowZhenek
@wowZhenek 4 жыл бұрын
Point pi/4 is forgotten? It does give zero in the limit though, but probably should be mentioned
@lifeofphyraprun7601
@lifeofphyraprun7601 4 жыл бұрын
Oh,so Spiderman is your patron.😂
@waitinblackout
@waitinblackout 4 жыл бұрын
Quicker way is to simplify the integral by noticing cos(x)>sin(x) below π/4, thus the function can be replaced by (cos^n(x))^(1/n) = cos(x) when n goes to infinity. Same replacement with sin(x) above π/4.
@BrendEcasa
@BrendEcasa 4 жыл бұрын
can you do it with a^2 in front of sin^2 and b^2 in front of cos^2? just the integral
@craccocrai2778
@craccocrai2778 4 жыл бұрын
Are you ever going to start a series on calculus 3?
@niyazkhan5789
@niyazkhan5789 4 жыл бұрын
Please try JEE advaced integral question
@nathanielhellerstein5871
@nathanielhellerstein5871 4 жыл бұрын
Lim(n->1/0) ((x^n)+(y^n))^(1/n) = max(x, y)
@benjaminbrady2385
@benjaminbrady2385 4 жыл бұрын
I'm curious how bprp solves this, haven't watched yet. Let me give my solution though, I recognise this as the L_infinity distance to the point (sin(x), cos(x)). For those who don't know, this will just be the supremum of the two (or whichever one is bigger). The layman's way to write this could be max(sin(x), cos(x)). This means we can split up the integral into two by integrating whichever is bigger on the interval and we get: Integral from 0 to pi/4 cos(x) dx + integral from pi/4 to pi/2 sin(x) dx (these are strictly positive on these intervals so we don't need to worry about absolute values ruining our day). These are easy enough, they both evaluate to sqrt(2)/2 so the answer is sqrt(2). Did I get it right?
@blackpenredpen
@blackpenredpen 4 жыл бұрын
Yes, you got it right!
@alexismiller2349
@alexismiller2349 4 жыл бұрын
This was exactly my first thought!
@hamiltonianpathondodecahed5236
@hamiltonianpathondodecahed5236 4 жыл бұрын
what do we mean by Linfinity distance sorry if it is a very stupid one
@piyushabhay
@piyushabhay 2 жыл бұрын
Cos decreases from 0 to pi/4 but still he took cos instead of sin while integrating from o to pi /4 Why??? Please explain Thanks in advance
@TheOiseau
@TheOiseau 2 жыл бұрын
@@piyushabhay It's not about whether cos decreases. It's about cos being _larger_ than sin on that interval. When you do the nth root of (a^n + b^n), whichever of a & b is largest will win (as n goes to infinity).
@malawigw
@malawigw 4 жыл бұрын
Nice book tip! It looks very good
@petrie911
@petrie911 3 жыл бұрын
The trig identity sin(x) = cos(pi/2 - x) shows that the integrand is symmetric about pi/4. So we can start by replacing the full integral by twice the integral from 0 to pi/4. This seems easier than trying to split the interval during the limit analysis.
@comingshoon2717
@comingshoon2717 4 жыл бұрын
En este canal veo problemas más avanzados de todas las materias, por eso me gusta 💪👍 bien ahí amigo, aparte he aprendido bastante el inglés en matemáticas y cosas relacionadas 👍
@StevenPhD4
@StevenPhD4 4 жыл бұрын
Mejor que unicoos o julio profe xd. Esos son un chiste comparado con estos problemas .
@comingshoon2717
@comingshoon2717 4 жыл бұрын
Steven Chau see jaja
@TheSenator007
@TheSenator007 4 жыл бұрын
For any natural number k the expression 1/sqrt(k) is equal to 1/k*sqrt(k). That rule makes adding terms containing 1/sqrt(k) easier. For example in this video at the end we had: 1/sqrt(2)+1/sqrt(2) which based on this rule is equal to 1/2*sqrt(2)+1/2*sqrt(2) which is easy to compute to be sqrt(2) I found this rule very helpful, but only after I had proven it I started really using it. The proof I wrote down went as follows: Given: k is a natural number To be proven: 1/sqrt(k) = 1/k*sqrt(k) Proof: 1/sqrt(k) = (1/sqrt(k))*1 = (1/sqrt(k))*(sqrt(k)/sqrt(k)) = sqrt(k)/(sqrt(k)*sqrt(k)) = sqrt(k)/k = 1/k*sqrt(k) q.e.d.
@sigmac30
@sigmac30 4 жыл бұрын
So happy to see this board back ! But I prefer when you do not spoil the result at the beginning, it is so satisfying when a simple answer comes out of nowhere at the end !
@bollyfan1330
@bollyfan1330 4 жыл бұрын
pi/4 should be included in first interval and not second one, since tan(pi/4) = 1, raising it to nth power is still just 1. adding the other 1 inside the n th root, you get the value as n tends to infinity of the n th root of 2, which is also 1, just like the rest of the values in the interval.
@walterpoelzing9412
@walterpoelzing9412 4 жыл бұрын
You are an incredible talent. I have a Masters Degree and you keep me at the top of my game everyday.
@Kinghercules
@Kinghercules 4 жыл бұрын
"Thats very nice!" 😄
@alexismiller2349
@alexismiller2349 4 жыл бұрын
Can i just add that the integrand is basically the distance calulated in L_{infinity} norm of a point on the L_2 norm unite circle? It actually simplifies the problem because it just represents the max function :D
@-ANaveenBagade
@-ANaveenBagade 4 жыл бұрын
So happy to see the big board after a long time.
@iridium8562
@iridium8562 4 жыл бұрын
3.10 is cancelling the root and the power possible in every case? Because for some limits it might not be possible
@ZackSussmanMusic
@ZackSussmanMusic 4 жыл бұрын
This question was awesome!
@georgepeterson2655
@georgepeterson2655 4 жыл бұрын
Just watch this Math channel... Very impressive kzbin.info/door/ZDkxpcvd-T1uR65Feuj5Yg
@forklift1712
@forklift1712 4 жыл бұрын
Your explanation that lim(x -> inf) ((tan x)^n + 1)^(1/n) = 1 when 0 inf)(1 + 1/x)^x and conclude that it is 1 and not e.
@burk314
@burk314 4 жыл бұрын
The difference there is that lim(x->inf) (1+1/x)^x is 1^infty which is an indeterminate form while lim(n->inf)((tan x)^n+1)^(1/n) is 1^0=1 and not indeterminate. Now maybe the way he worded it is not the best, but there's not really a problem here.
@winniethexiinwesttaiwan8578
@winniethexiinwesttaiwan8578 4 жыл бұрын
the inside part equals to max(cos(x),sin(x)), so the division boundary is very clearly pi/4
@AhmedHan
@AhmedHan 4 жыл бұрын
I can calculate it for n=2.
@hamza_alsamraee
@hamza_alsamraee 4 жыл бұрын
Great explanation!
@chessdominos
@chessdominos 4 жыл бұрын
I loved how you solved it. I reached the same conclusion by using the limit definition of e , exponential property and range of integration. I liked your better.
@georgepeterson2655
@georgepeterson2655 4 жыл бұрын
Just watch this Math channel... Very impressive kzbin.info/door/ZDkxpcvd-T1uR65Feuj5Yg
@chessdominos
@chessdominos 4 жыл бұрын
@@georgepeterson2655 Whaaaat!? That is impressive. Thank you so much. It looks fantastic.
@georgepeterson2655
@georgepeterson2655 4 жыл бұрын
@@chessdominos welcome
@thelightningwave
@thelightningwave 4 жыл бұрын
I learned in my real analysis II course about norm and so our norm ||x||n= (sum from i =1 to m of (x sub i)^n)^1/n and so our usual norm is when n equals to two, which makes the infinity norm which is what black pen red pen went over is the basically equal to max{x sub 1, x sub 2..... x sub m}. (Please don't ask me to prove it, I really don't know how to prove that.) And he could have looked for the interval which cosine is the max which is [0, pi /4) and the interval which sine is the max which is (pi/4, pi/2] and then calculate the integral.
@SylComplexDimensional
@SylComplexDimensional 4 жыл бұрын
tan(pi/2) is sin(pi/2)/cos(pi/2) & cos(pi/2) computationally is a floating point number 6.1232e-17 therefore tan(pi/2) is defined as 16331239353195370. 🎄
@buzzfeedteen
@buzzfeedteen 4 жыл бұрын
This channel makes me happier than it should
@sherlockjunior8612
@sherlockjunior8612 4 жыл бұрын
This problem is a paid actor, explains how he solves everything!
@kingbeauregard
@kingbeauregard 4 жыл бұрын
What I like about this problem is, I am incapable of coming up with any intuitions about the original integrand, but after factoring out the cosine term I can pretty easily see what I'm looking at. And then, MUCH later, I can look back at the original function and almost understand it intuitively: since we're talking about infinities, only the sine term or the cosine term will be significant, while the other will diminish to irrelevance. What I'm saying is, I'm a little smarter after seeing this.
@gekkouga2828
@gekkouga2828 4 жыл бұрын
It's interesting and amazing 😍😍(shocked and bewildered😂😤😲) to see how such a difficult and complex (not complex numbers) problem transformed into such easy question !!!!!! You're kidding me! 😁 I mean, look at that transformation !!!!!!!💖 Truly stunning !!!😃 BlackPenRedPen, you are awesome!💞💟💕💖💓
@mohammadfahrurrozy8082
@mohammadfahrurrozy8082 4 жыл бұрын
I know right Im a highschooler ,learned calculus and this looks so amazing
@georgepeterson2655
@georgepeterson2655 4 жыл бұрын
Just watch this Math channel... Very impressive kzbin.info/door/ZDkxpcvd-T1uR65Feuj5Yg
@PureMathGuy
@PureMathGuy 4 жыл бұрын
I don't understand how you computed lim n->inf (tan^n(x) + 1)^1/n. If you take the limit inside there and compute it, then its similar to calculating e = lim n->inf (1 + 1/n)^n = 1^inf = 1 which is incorrect. So how do you justify this?
@adamrjhughes
@adamrjhughes 4 жыл бұрын
what about +c ??
@sinecurve9999
@sinecurve9999 4 жыл бұрын
This problem reminds me of the infinity-norm. Lim{p->infinity} (sum_i(x_i^p))^(1/p) = max{x_i}
@prashantshukla6018
@prashantshukla6018 4 жыл бұрын
You should try and make videos of prmo previous year paper u can download the pdf from Google please
@eustacenjeru7225
@eustacenjeru7225 4 жыл бұрын
Excellent reasoning
@divyt8446
@divyt8446 4 жыл бұрын
Welcome to another episode off every thing bounces of our brain...
@yafqakhan3913
@yafqakhan3913 4 жыл бұрын
What happens if you differentiate under the integral sign with respect to n?
@Дмитрий-в2з1ч
@Дмитрий-в2з1ч 4 жыл бұрын
why u can switch the order of limits (limit and integral)? it needs proof
@georgepeterson2655
@georgepeterson2655 4 жыл бұрын
Just watch this Math channel... Very impressive kzbin.info/door/ZDkxpcvd-T1uR65Feuj5Yg
@OlympicMaths
@OlympicMaths 4 жыл бұрын
It was interesting. Regards, Blackpenredpen!
@criskity
@criskity 4 жыл бұрын
That's bizarre! I would have thought that an infinite power of a sine or cosine would look like a flat line of zero height with a blip of height 1 or -1 at every pi steps. So my intuition said the answer to this problem had to be zero.
@stephenbeck7222
@stephenbeck7222 4 жыл бұрын
That’s where the n-th root does a lot of work, raising all those little flat line parts up. Remember for 0
@cable4751
@cable4751 4 жыл бұрын
can you do the integral of the 5th root of tanx pls
@georgepeterson2655
@georgepeterson2655 4 жыл бұрын
Just watch this Math channel... Very impressive kzbin.info/door/ZDkxpcvd-T1uR65Feuj5Yg
@tomkerruish2982
@tomkerruish2982 4 жыл бұрын
Just use lim(a^n + b^n)^(1/n) = max{a,b} as n goes to positive infinity for nonnegative a,b.
@Mustapha.Math_at_KUSTWUDIL
@Mustapha.Math_at_KUSTWUDIL 4 жыл бұрын
In this case, What will be the max?
@medmoufahim
@medmoufahim 4 жыл бұрын
where the fountain is located please ? by the way you do a great job simpifying math (y)
@AbhayKumar-hb7il
@AbhayKumar-hb7il 2 жыл бұрын
Why x is not equal to pi/4 in first interval itself bcuz exact one raised to power infinity is 1 and 1 is finite Plz explain sir
@edward_0909
@edward_0909 3 жыл бұрын
你没说到为什么 极限号 可以 “穿入” 积分号内😥
@subhadeepsarkar5606
@subhadeepsarkar5606 4 жыл бұрын
hey bprp, today i watched your simple setup video.i just wanted to ask which hard drive you used for storing your videos??
@georgepeterson2655
@georgepeterson2655 4 жыл бұрын
Just watch this Math channel... Very impressive kzbin.info/door/ZDkxpcvd-T1uR65Feuj5Yg
@subhadeepsarkar5606
@subhadeepsarkar5606 4 жыл бұрын
@@georgepeterson2655 u can use big white board. It will be very good
@NovaWarrior77
@NovaWarrior77 4 жыл бұрын
Good stuff!
@gustavorc25
@gustavorc25 4 жыл бұрын
Very impressive but you can resolve: ∫(tan(x)^(1/n))dx=?
@georgepeterson2655
@georgepeterson2655 4 жыл бұрын
Just watch this Math channel... Very impressive kzbin.info/door/ZDkxpcvd-T1uR65Feuj5Yg
@eliardosoarescoelho4333
@eliardosoarescoelho4333 4 жыл бұрын
Note 100000000ⁿ10100 kkkkk parabéns Blackpenredpen 👏👏👏👏👏👏👏👏👏👏👏👏👏👏👏👏👏
@ameerunbegum7525
@ameerunbegum7525 4 жыл бұрын
At last, you got the big board, yeah ! big is nice.
@drpeyam
@drpeyam 4 жыл бұрын
Whoa!!!
@blackpenredpen
@blackpenredpen 4 жыл бұрын
Dr Peyam thanks! Some steps apparently aren’t rigorous and unjustified but I tried!
@xCwieCHRISx
@xCwieCHRISx 3 жыл бұрын
0:14 and 99% of people are just waiting 5sec
@carlfarruggio3835
@carlfarruggio3835 4 жыл бұрын
Would you pleas be kind and explain to me where ever I’m going to use this... and what’s the point of it.
@urmemlel8721
@urmemlel8721 4 жыл бұрын
Damn, i sounded elitst as fuck, imma delete this
@purim_sakamoto
@purim_sakamoto 3 жыл бұрын
やああ 理屈はわかったけど、 なんか見落としてる気がしちゃうんだけど、これで合ってるわけだねええ 無限乗のインテグラルってそうやって扱うのかあ
@Dionisi0
@Dionisi0 4 жыл бұрын
7:30 not justfied
@angelmendez-rivera351
@angelmendez-rivera351 4 жыл бұрын
The integral sequence converges uniformly, so it's fine. He didn't justify it in the video, but we know it's true. It's almost trivial to prove, so any person watching should be able to gather that much.
@Dionisi0
@Dionisi0 4 жыл бұрын
@@angelmendez-rivera351 que no justifica los valores asignados en el momento de separar la integral en 2 partes, eso lo asume el, no signifca que sea correcto
@angelmendez-rivera351
@angelmendez-rivera351 4 жыл бұрын
Zamir C No, te equivocas, él lo justificó en la sección previa. No es una asunción.
@egillandersson1780
@egillandersson1780 4 жыл бұрын
Wow ! Your whiteboard grew up again !
@kallolmanna8664
@kallolmanna8664 4 жыл бұрын
If we chan the limit of the integral the it is possible.. that is twice the integral..
@rezamiau
@rezamiau 4 жыл бұрын
Great! Thanks
@insouciantFox
@insouciantFox 4 жыл бұрын
For once thinking about it geometrically helped.
@Rahulsingh-lw8hk
@Rahulsingh-lw8hk 4 жыл бұрын
hi , can you please upload a video on visualising complex roots of a cubic equation graphically ?
@nuctang
@nuctang 4 жыл бұрын
Whiteboard is back!
@blackpenredpen
@blackpenredpen 4 жыл бұрын
This was recorded back in December.. sorry
@mathadventuress
@mathadventuress 4 жыл бұрын
Black pen red pen.... Blue pen Too much to process 🤪🤪
@Peter_1986
@Peter_1986 4 жыл бұрын
He also used a purple pen in some other video from maybe a couple years ago.
@mathadventuress
@mathadventuress 4 жыл бұрын
@@Peter_1986 oh man...
@elizabethparnell4724
@elizabethparnell4724 4 жыл бұрын
ooo yay big whiteboard!!
@tarunverma3335
@tarunverma3335 4 жыл бұрын
Limit + integral = Limtegral
@sasoribi1341
@sasoribi1341 4 жыл бұрын
nice potential😎
@UltimateGaminggaurang
@UltimateGaminggaurang 4 жыл бұрын
Hey! Can we solve using LOGARITHM??? Those properties make the calculations much more easier!!!!
@oussamalaaroussi5467
@oussamalaaroussi5467 4 жыл бұрын
Hello, I was thinking why we forgot the +1 in the second case where tanx >=1 , and thanks
@dlevi67
@dlevi67 4 жыл бұрын
Because tan(x) to the nth power when tan(x) > 1 goes to infinity, and infinity + 1 is still infinity, so at the limit we can neglect the 1 and you end up with nth root of [tan(x)]^n, i.e. tan(x). There's a fair amount of hand-waving in this one...
@joryjones6808
@joryjones6808 4 жыл бұрын
Watching this instead of preparing for calc 2 test tomorrow.
@georgepeterson2655
@georgepeterson2655 4 жыл бұрын
Just watch this Math channel... Very impressive kzbin.info/door/ZDkxpcvd-T1uR65Feuj5Yg
@joaopaulorangel1010
@joaopaulorangel1010 4 жыл бұрын
I found sqrt(2)/2
@joaopaulorangel1010
@joaopaulorangel1010 4 жыл бұрын
Oh, i Just saw my mistake
@miso-ge1gz
@miso-ge1gz 4 жыл бұрын
what. This video is 4 years too advanced for me
@bandamkaromi
@bandamkaromi 4 жыл бұрын
Wow! Big Big Big Board.
@thedoublehelix5661
@thedoublehelix5661 4 жыл бұрын
unjustified interchange of limits smh
@leefisher4418
@leefisher4418 4 жыл бұрын
you could apply bounded convergence theorem to interchanged the limit and integral.
@markuschen6729
@markuschen6729 4 жыл бұрын
I just have the same question. The proof of the interchangability of limit and integral is essential for the solution.
@ishrakhameem2313
@ishrakhameem2313 4 жыл бұрын
3rd comment, love from Bangladesh 🇧🇩❤
@phythematics2188
@phythematics2188 4 жыл бұрын
Me also
@jochoa2009
@jochoa2009 4 жыл бұрын
Those small whiteboards stressed me out.
@mamadou3076
@mamadou3076 4 жыл бұрын
Blackpenredpen I've something for you Prove that x^2-y^2=3 has no solution in Q world
@willnewman9783
@willnewman9783 4 жыл бұрын
But 2^2-1^2=3
@mamadou3076
@mamadou3076 4 жыл бұрын
@@willnewman9783 yes sorry I did a mistake it is not "minus" but "plus" So the question is : Prove that x^2 + y^2 = 3 has no solution (so show that it is impossible) in the Q world
@8nagesh
@8nagesh 4 жыл бұрын
I am new to this and I am lost in jungle😀
@HardyPinto
@HardyPinto 4 жыл бұрын
I could not resist to make a small python code that numerically calculate the integral (Euler's method) ###--- CODE BEGINS HERE import numpy as np import matplotlib.pyplot as plt #uses 10000 steps! k=10000 h=(np.pi/2)/k #stepsize! x=np.linspace(0,np.pi/2,k) #sweeps n from 1 to 998 for n in range(1,1000,2): y=((np.cos(x))**n+np.sin(x)**n)**(1/n) plt.plot(x,y) plt.axis([0,np.pi/2,0,1.5]) #Euler Integration here yi=np.sum(y*h) #Integral ei=np.abs(yi-2*np.sqrt(2)) #Absolute error ep= ei/yi*100 #relative error (percentage) print (f'{n:02d} | {yi:1.5f} | {ei:1.5f} | {ep:>8.5f} %') plt.show() ###--- CODE ENDS HERE
@coderdemo9169
@coderdemo9169 4 жыл бұрын
Ohh no ☹️ 😔😟
@Charles_Reid
@Charles_Reid 4 жыл бұрын
Who thinks of these problems??!
@albertusventer2896
@albertusventer2896 4 жыл бұрын
cos(0) = 1 not zero :)
@bengtbengt3850
@bengtbengt3850 4 жыл бұрын
I found it very annoying that you just interchanged the limits without even mentioning that it’s not a trivial thing.
@sagnikbiswas3268
@sagnikbiswas3268 4 ай бұрын
My intuition is 0
@pabloszuban3107
@pabloszuban3107 4 жыл бұрын
Wow
@52.yusrilihsanadinatanegar79
@52.yusrilihsanadinatanegar79 4 жыл бұрын
yay big board
Extreme Trig Question
17:10
blackpenredpen
Рет қаралды 79 М.
an A5 Putnam Exam integral for calc 2 students
19:10
blackpenredpen
Рет қаралды 429 М.
Tuna 🍣 ​⁠@patrickzeinali ​⁠@ChefRush
00:48
albert_cancook
Рет қаралды 148 МЛН
Леон киллер и Оля Полякова 😹
00:42
Канал Смеха
Рет қаралды 4,7 МЛН
99.9% IMPOSSIBLE
00:24
STORROR
Рет қаралды 31 МЛН
A crazy yet perfect integral
12:24
Maths 505
Рет қаралды 15 М.
A Brilliant Limit
16:58
blackpenredpen
Рет қаралды 1,4 МЛН
A very interesting differential equation.
16:28
Michael Penn
Рет қаралды 960 М.
A pretty reason why Gaussian + Gaussian = Gaussian
13:16
3Blue1Brown
Рет қаралды 824 М.
What does it feel like to invent math?
15:08
3Blue1Brown
Рет қаралды 4,2 МЛН
so you want a HARD integral from the Berkeley Math Tournament
22:28
blackpenredpen
Рет қаралды 566 М.
Solving 'impossible' integrals in seconds
6:35
MindYourDecisions
Рет қаралды 1,3 МЛН
integral of sqrt(tan(x)) by brute force
19:41
blackpenredpen
Рет қаралды 553 М.
One crazy looking integral
13:06
Michael Penn
Рет қаралды 37 М.
Tuna 🍣 ​⁠@patrickzeinali ​⁠@ChefRush
00:48
albert_cancook
Рет қаралды 148 МЛН