inverse laplace of s/(s^2+1)^2, using convolution theorem

  Рет қаралды 256,731

blackpenredpen

blackpenredpen

Күн бұрын

Пікірлер
@DrLol07
@DrLol07 7 жыл бұрын
you explained two hours worth of lecture from my professor in 10 minutes. Amazing video
@aznmayo
@aznmayo 7 күн бұрын
5:09, thank you for explaining steps that students might not know! you are the best
@ov3rkill
@ov3rkill 5 жыл бұрын
Can we all just agree and appreciate his pen switch skills while writing besides of course his math skills.
@bizzle9041
@bizzle9041 3 жыл бұрын
Yes we can
@taehokang2551
@taehokang2551 3 жыл бұрын
Couldn’t focus cuz of that mesmerising skilllllll
@federicopagano6590
@federicopagano6590 5 жыл бұрын
We shouldn't put + C for many reasons 1°) it's a definite integral 2°) the inverse laplace transform always it's a one to one operator unique result 3°) we could think this problem like the L^-1[L{ -1/2(L {sin (t)} }'s ]= - t .f (t) then f=1/2 (sen (t)/t) ✔
@shawntran6000
@shawntran6000 8 күн бұрын
This made so much sense. Thank you, I have a calc exam in 2 hours and I have been blessed with this video!
@djalixos4008
@djalixos4008 7 жыл бұрын
i really like your way of explaining,a big salute from Morocco ☆
@chinmayabehera8961
@chinmayabehera8961 6 жыл бұрын
cz its a definite integral we don't use c here .....your the best tutor I have ever seen....THANKS
@blackpenredpen
@blackpenredpen 6 жыл бұрын
chinmaya behera I am an instructor who looks young. :)
@e.s.r5809
@e.s.r5809 2 жыл бұрын
It's definitely cooler than partial fractions-- but the coolest part is not having to do partial fractions. 😉 Thank you!
@password6975
@password6975 7 жыл бұрын
i learn so much from your videos, not only do they help me with the subject you are teaching, but also with my math understanding in general, you are a great teacher.
@Guru_Joe_Praise2023
@Guru_Joe_Praise2023 8 ай бұрын
In just a few minutes I have understood Convolution theorem of Laplace Transform well done sir👍
@nurten5903
@nurten5903 2 жыл бұрын
I was struggling with a question in my textbook and decided to watch solution to another question, find this video and realized that you solved the same exact question that I was struggling with! I'm so happy thank you!
@new-jj5il
@new-jj5il 4 жыл бұрын
Excellent explanation Without neglecting any small mathematical step... Thanks
@johnkarlorcajada3147
@johnkarlorcajada3147 7 жыл бұрын
No +C because it is a definite integral.
@blackpenredpen
@blackpenredpen 7 жыл бұрын
LOL! YUP!!!!
@sugarfrosted2005
@sugarfrosted2005 6 жыл бұрын
If you want to be pedantic, it's there, it's just eaten when you substitute the end points in.
@AlgyCuber
@AlgyCuber 6 жыл бұрын
and it’s an inverse laplace not an inverse derivative
@sergiorome42
@sergiorome42 2 жыл бұрын
I love these examples, so clear, so simple, so beautiful
@thristangamer2576
@thristangamer2576 25 күн бұрын
Very great video. I watched a couple of times for practice, and memorized thr process already. Fingers crossed, so I do well on my test tomorrow
@jobalfred9603
@jobalfred9603 4 жыл бұрын
GREAT TUTOR.Youve made understand this concepts better.Highly recommend.
@aleksgornik
@aleksgornik 2 жыл бұрын
i dont think you know how many engineering students your saving
@ayamohamed7468
@ayamohamed7468 Жыл бұрын
I have watched this video before my exam and this exact example has come and I quickly remembered watching this video .. Thank you!
@skwbusaidi
@skwbusaidi 5 жыл бұрын
Good . Also we can also use the fact that laplace of t f(t) = -d/ds ( F(s)) We can take f(t) = 1/2 sint
@JeffNkwilimba
@JeffNkwilimba Жыл бұрын
I will consider you in my research report you have helped me alot in terms of calculus at the University, thanks very much ❤❤❤❤
@bench9118
@bench9118 5 жыл бұрын
if i just saw this before my exam, i would have got a perfect score........ nice bro...
@60_co_ayeshashaikh10
@60_co_ayeshashaikh10 2 жыл бұрын
Well explained and also ur skill of switching pens is amazing, thank you for lecture😍
@utkarshanayak1710
@utkarshanayak1710 3 жыл бұрын
Never heard of Convolution theorem. But you explained so easily 🙏🙏❤️. Thanks #blackpenredpen Btw no +C since it is a definite integral 😎
@parthokr
@parthokr 3 жыл бұрын
You are so happy when you found sin(t) as constant in v world. It made me happy too.
@maneeshkoru2312
@maneeshkoru2312 3 жыл бұрын
You can also use L[t.f(t)]=-dF(s)/ds, complex differentiation theorem.
@izuchukwuokafor8130
@izuchukwuokafor8130 2 жыл бұрын
You are Superb Sir Blessings from the most high
@hoon8768
@hoon8768 6 жыл бұрын
Thank you very very much!!!! From south korea
@holyshit922
@holyshit922 2 жыл бұрын
3:14 , integration by parts will work if you expand sin(t-v) to get two integrals
@stephanm.tjaden3887
@stephanm.tjaden3887 5 жыл бұрын
You are awesome! You take something that seems so complicated and make it very , very easy to understand.
@ANANDYADAV-sc1se
@ANANDYADAV-sc1se 2 жыл бұрын
Cool explanation , I like it
@mariogabrielsalvatierrafra4500
@mariogabrielsalvatierrafra4500 7 жыл бұрын
SUCH A GREAT EXAMPLE OF AN INVERSE LAPLACE TRANSFORMATION, I hope you can do examples of diferential ecuaions with the special functions like delta of dirac and others, i mean diferential ecuations where you have to use laplace transformation, keep doing those videos, they are so great
@chapahewawasam1222
@chapahewawasam1222 4 жыл бұрын
Amazing teaching skill. Thank u so much ♥️
@mrinmoybhaduri9666
@mrinmoybhaduri9666 6 жыл бұрын
You explained it so good iam from india, thnks
@algion24
@algion24 3 жыл бұрын
An easier way to evaluate the convolution let I = sin(t)*cos(t) = int 0 to t (sin(t-v)cos(v))dv since convolution is commutative I = int 0 to t (cos(t-v)sin(v))dv add the 2 together 2I = int 0 to t (sin(t-v)cos(v)+cos(t-v)sin(v))dv this becomes an angle sum formula for sin 2I = int 0 to t (sin(t-v+v))dv = int 0 to t (sin(t))dv = vsin(t) from 0 to t = tsin(t) - 0sin(t) = tsin(t) divide both sides by 2 I = tsin(t)/2
@carultch
@carultch Жыл бұрын
An easier way to evaluate it without using convolution. Use the s-derivative property of the Laplace transform, where L{t*f(t)} = -d/ds F(s). Take the s-derivative of sine's Laplace transform: d/ds 1/(s^2 + 1) = -2*s/(s^2 + 1)^2 Therefore: L{t*sin(t)} = 2*s/(s^2 + 1)^2 Multiply both sides by 1/2: 1/2*L{t*sin(t)} = s/(s^2 + 1)^2 Recognize the original transform we're trying to invert in the above. Thus: L-1 {s/(s^2 + 1)^2} = 1/2*t*sin(t)
@levialviter2302
@levialviter2302 3 жыл бұрын
Thx a lot. You've just saved me. Stay smart.
@Sednas
@Sednas Жыл бұрын
no, you do not need to put down +C, and that was hilarious 😂😂😂. I love your videos they are so useful but also funny sometimes.
@xongram3139
@xongram3139 4 жыл бұрын
Thank you so much....it was a 10marks question in my exam
@FutballFocusTV
@FutballFocusTV 6 жыл бұрын
a big salute from Berkeley ,CA keep the good work
@blackpenredpen
@blackpenredpen 6 жыл бұрын
Glad to help!
@FutballFocusTV
@FutballFocusTV 6 жыл бұрын
blackpenredpen . Thank you sir , i got this question as well . Use convolution theorem to find the inverse laplace transform of the following. f(s) = 1/s+p)(s+q) Do you have an email ?
@FutballFocusTV
@FutballFocusTV 6 жыл бұрын
blackpenredpen my email is futtaingrp40@gmail.com
@mariogabrielsalvatierrafra4500
@mariogabrielsalvatierrafra4500 7 жыл бұрын
Such a great video and no we don't need to put +C because the convolution is a definite integral so the C is not necesary
@jarikosonen4079
@jarikosonen4079 5 жыл бұрын
The plus C could be allowed, but might depend on the initial conditions. The problem is that how to make laplace of sin(x)+2 ? It doesn't work maybe. Then if inverse laplace should give sin(x)+2, how to? This method seems to work, but requires a lot of calculation. Basically signals can be transferred both on time and signal axes. sin(x) becoming sin(x-t0)+C if transferred in both axes. One could use sin(x)+2×u(t), but that wouldn't be same as sin(x)+2, except for t>=0. If Laplace valid for t>=0 only it seems maybe also reason why u(t) should be used instead. But one could add just 2 if the offset of 2 is certain. The calculation without offset is easier maybe and doing things around the 0 instead of 2 is more practical in this math. Like solving x^2 + 3x + 1 = 0 rather than x^2 + 3x + 3 = 2. You could tune the 2nd degree polynomial equation solving to work with right side =2 rather than =0, but it would get more complicated. Can you calculate inverse laplace transform of s^2/(s^2 + w^2) as an example case also?
@sunset1394
@sunset1394 6 жыл бұрын
exam tommorow and here he comes with his black pen and red pen and saves my day.
@ZARA_KEYS
@ZARA_KEYS 6 ай бұрын
Well teaching.... Anybody in 2024??
@blackpenredpen
@blackpenredpen 6 ай бұрын
Thanks!!!
@carlos199613ful
@carlos199613ful 7 жыл бұрын
Greetings from Honduras! Youre a genuis man !
@robinrotich118
@robinrotich118 4 жыл бұрын
waauh amazing math lesson i have understood everything on convolution
@jun6003
@jun6003 7 жыл бұрын
thanks! it's very helpful !!
@BK-dx3cp
@BK-dx3cp 3 жыл бұрын
He’s a great tutor!!
@ShinSeokWoo
@ShinSeokWoo 8 ай бұрын
Thank you exponentially !
@liyanaminaj2309
@liyanaminaj2309 3 жыл бұрын
"don't be lazy", it get me LOL
@himanshu11876
@himanshu11876 7 жыл бұрын
2nd method #dis function is derivative of (S^2+1)^-1,so inverse function would be multipled by t
@anishachoudhury_
@anishachoudhury_ 6 жыл бұрын
Can u just explaim why did he use sin t-v instead of sint in 4th step
@NoobMaster-yw6eo
@NoobMaster-yw6eo 5 жыл бұрын
@@anishachoudhury_ it's just how the convolution is done
@NoobMaster-yw6eo
@NoobMaster-yw6eo 5 жыл бұрын
Hey could u write down how would u use that method on this is function cuz am kinda lost with it
@eseranceese9305
@eseranceese9305 3 жыл бұрын
Thanks! This is very helpful!. Can i ask what if the equation is inverse laplace of [ 1/(s²-9)²] is it using convolation to solve it?
@eseranceese9305
@eseranceese9305 3 жыл бұрын
Uhm also what if the s on the top of it squared? Like s²/(s²+1)²?
@carultch
@carultch Жыл бұрын
​@@eseranceese9305 A method I recommend, is to assume it is an arbitrary linear combination of t*sin(3*t), t*cos(3*t), sin(3*t), and cos(3*t). Then take the Laplace transforms of each of component function, using the s-derivative property of Laplace transforms. Set up the linear combination with undetermined coefficients, and use algebra to solve for them. L{cos(3*t)} = s/(s^2 + 9) L{sin(3*t)} = 3/(s^2 + 9) L{t*cos(3*t)} = -d/ds L{cos(3*t)}= (s^2 - 9)/(s^2 + 9)^2 L{t*sin(3*t)} = -d/ds L{sin(3*t)}= 6*s/(s^2 + 9)^2 Let the Laplace transform we're trying to invert, equal the following, and solve for A, B, C, and D: A*s/(s^2 + 9) + 3*B/(s^2 + 9) + C*(s^2 - 9)/(s^2 + 9)^2 + 6*D*s/(s^2 + 9)^2 For 1/(s^2 + 9)^2: 1/(s^2 + 9)^2 = A*s/(s^2 + 9) + 3*B/(s^2 + 9) + C*(s^2 - 9)/(s^2 + 9)^2 + 6*D*s/(s^2 + 9)^2 1 = A*s*(s^2 + 9) + 3*B*(s^2 + 9) + C*(s^2 - 9) + 6*D*s 1 = A*s^3 + 9*A*s + 3*B*s^2 + 27*B + C*s^2 - 9*C + 6*D*s A = 0 3*B + C = 0 27*B - 9*C = 1 D = 0 Solution for B&C: B = 1/54, C=-1/18 Thus: inverse Laplace of 1/(s^2 + 9)^2 = 1/54*sin(3*t) - 1/18*t*cos(3*t)
@queenqueen4662
@queenqueen4662 6 жыл бұрын
Thank u so much sir this video helps me a lot 🙏🙏
@holyshit922
@holyshit922 7 жыл бұрын
Complex partial fraction will work We could also use differentiation
@blackpenredpen
@blackpenredpen 7 жыл бұрын
yup
@andymorejon2am
@andymorejon2am 6 жыл бұрын
This guy is funny af, congrats on your talent
@Hakayaaat
@Hakayaaat 5 жыл бұрын
Amazing bro Thanks a lot
@thommythomas3123
@thommythomas3123 3 жыл бұрын
good explaination
@a.s.l711
@a.s.l711 5 ай бұрын
just how does the laplace work from 1/(s+1) becomes e^-t. what is the logic behind the conversion.
@sushantlakra6715
@sushantlakra6715 6 жыл бұрын
excellent sir ...
@daynaladd8894
@daynaladd8894 5 жыл бұрын
Wow amazing! Thank you so much!
@solinothman4094
@solinothman4094 5 жыл бұрын
I love doing math with your videos You're Amazing ❤
@SuHAibLOL
@SuHAibLOL 7 жыл бұрын
integral transforms are just great
@blackpenredpen
@blackpenredpen 7 жыл бұрын
Yes!
@maayoufamoez2217
@maayoufamoez2217 6 жыл бұрын
all maths is here in this equation. good example thank you but i like the way you play with pens :) :)
@ernestamoah2612
@ernestamoah2612 Жыл бұрын
Thank you sir.
@diegonavia1404
@diegonavia1404 6 жыл бұрын
wena hermano greetings from chile
@darcash1738
@darcash1738 8 ай бұрын
Just watching this for fun, seems pretty cool. can someone explain the step from sint * cost? why does the argument of sin become "t-v", whereas for cos it becomes simply "v"? and perhaps i should know what is being convoluted in this convolution 😂
@flickboxextra3127
@flickboxextra3127 Жыл бұрын
Very good
@demenion3521
@demenion3521 7 жыл бұрын
you should probably add an argument after the laplace transform like L{f(t)}(s). otherwise one has always to remember which variables you use normally. And also: i am used to the convolution over the whole reals. is it actually the same thing as the integral from 0 to t?
@IrfanNasir
@IrfanNasir 6 жыл бұрын
Thank you very much sir
@helldogforever
@helldogforever 6 жыл бұрын
Your video helped.
@suzeetasuzee9018
@suzeetasuzee9018 7 жыл бұрын
can u please upload more examples of convolution theorem.......
@emmanueljoseph8540
@emmanueljoseph8540 3 ай бұрын
Can UNIBEN STUDENTS gather here and sign attendance
@andremiller482
@andremiller482 6 жыл бұрын
You're awesome dude
@teo97judo
@teo97judo 6 жыл бұрын
Hello Steve, my name is Teo and I come all the way from Greece. I was trying to solve an inverse Laplace and googled for help so I stumbled upon this video.The problem is I can't exactly understand how to use this method on my problem. The problem is inverse Laplace of (s+3)/(s^2 + 4)^2 . I tried the partial fraction method as well but it seems that it can't be divided. I'd love to hear back from you with some help because I'm sure it will take you 5 minutes to solve it. Thank you for your time anyway.
@DrQuatsch
@DrQuatsch 5 жыл бұрын
The first thing that comes to mind is separating it. L^-1{s/(s^2 + 4)^2} + 3L^-1{1/(s^2 + 4)^2}. The first part is pretty much the same as in the video, but you only have s^2 + 2^2 in the denominator, so that results in tsin(2t)/4. There's an extra factor of 1/2, because you have to match the 2 on the top for the sine part. For the other fraction you will have to calculate a convolution of two sines: 3(L^-1{1/(s^2 + 4)} * L^-1{1/(s^2 + 4)}) = 3/4(L^-1{2/(s^2 + 2^2)} * L^-1{2/(s^2 + 2^2}) = 3/4(sin(2t) * sin(2t)).
@Novak2611
@Novak2611 3 жыл бұрын
One can simply use the derivative of Laplace transform of cos: L'(f)=-L(tf) (i am not talking about Laplace of derivative)
@الاستاذأزهرمحمدماجستيرعلومرياض
@الاستاذأزهرمحمدماجستيرعلومرياض 8 ай бұрын
Integrate denominator and take inverse to the result to get F(s) and the result is - d/ds F(s)
@ChickenJY
@ChickenJY 6 жыл бұрын
Prof, may I request a Fourier Transform/ Inverse FT videos from you ?
@hungmai7533
@hungmai7533 Жыл бұрын
thank you so much sir
@mr.hridoy245
@mr.hridoy245 6 жыл бұрын
the lovely way to do this math, i like your your way to solve,thank you sir
@santiagocas3683
@santiagocas3683 4 жыл бұрын
Broo, I got a big question, how to know, where put, t-v, for expmle, cos(t-v)sin(v), ¿Cómo sabes donde poner (t-v), ?¿ Podría haber sido cos(t-v)sin(v)? Disculpa el inglés, no soy nativo.
@carultch
@carultch Жыл бұрын
It is completely arbitrary which one gets v, and which one gets t-v, since convolution is commutative.
@Grundini91
@Grundini91 7 жыл бұрын
It's a definite integral, no +c
@jerryjin5871
@jerryjin5871 5 жыл бұрын
That was amazing!
@adityapahalvan6484
@adityapahalvan6484 6 жыл бұрын
Sir make the video on complex integration,contour
@sydbugnano8431
@sydbugnano8431 4 жыл бұрын
I love how much he loves math
@manishmodak1726
@manishmodak1726 5 жыл бұрын
Do it for the minus sign too without using the convolution theorem please
@enricoperrotta5676
@enricoperrotta5676 2 жыл бұрын
Awesome
@helloitsme7553
@helloitsme7553 7 жыл бұрын
no +c, cause any function has a unique La place transform and any La place transform belongs to a unique function
@blackpenredpen
@blackpenredpen 7 жыл бұрын
yea!
@john-athancrow4169
@john-athancrow4169 6 жыл бұрын
I heard sin instead of cos and then I said, «Oh, it's COsine!»
@harvindyadav862
@harvindyadav862 5 жыл бұрын
s/(s^2+a^2)^2= (-0.5)*d/ds{1/(s^2+a^2)} Now apply derivative formula.
@쿸2
@쿸2 2 жыл бұрын
Is there any way not to ise Convolution theorem??
@쿸2
@쿸2 2 жыл бұрын
Not to use
@carultch
@carultch Жыл бұрын
@@쿸2 You can take s-derivatives of the Laplace of sine and cosine, and use the s-derivative property to find the Laplace transform of t*sin(t) and t*cos(t). Then set up a linear combination of A*cos(t) + B*sin(t) + C*t*cos(t) + D*t*sin(t). Solve for A, B, C, and D.
@vidyatarani2554
@vidyatarani2554 6 жыл бұрын
Can you plz tell this question by partial fraction method . Is it possible to do this question in this method
@carultch
@carultch Жыл бұрын
Partial fractions won't help you here, because you already have the denominator as reduced as possible. Unless you explore complex roots of the denominator.
@georgeharry7729
@georgeharry7729 6 жыл бұрын
Love you Sir
@oussamaelajjaj6137
@oussamaelajjaj6137 5 жыл бұрын
Tfoe gay
@hashem4287
@hashem4287 6 жыл бұрын
Thank you very much
@mutalejohn5295
@mutalejohn5295 2 жыл бұрын
Thank you!
@mammu3635
@mammu3635 Жыл бұрын
Find L inverse [s/(s+4)²] plzz answer for this sir I have exams this month plzz 🙏 sir
@carultch
@carultch Жыл бұрын
Given: s/(s + 4)^2 Add zero in a fancy way, to form a term we can cancel: (s + 4 - 4)/(s + 4)^2 = (s + 4)/(s + 4)^2 - 4/(s + 4)^2 = 1/(s + 4) - 4/(s + 4)^2 The first term inverts as e^(-4*t). The second term requires us to use the s-derivative property to unpack it. In general, L{t*f(t)} = -d/ds L{f(t)}. The expression we have to unpack, is related to the s-derivative of 1/(s + 4), so differentiate this: -d/ds 1/(s + 4) = 1/(s + 4)^2 Thus: L-1{-4/(s+ 4)^2} = -4*t*e^(-4*t) Thus, the solution is: e^(-4*t) - 4*t*e^(-4*t)
@nickdelligatti3712
@nickdelligatti3712 6 жыл бұрын
are you wearing Supreme?
@blackpenredpen
@blackpenredpen 6 жыл бұрын
: )
@fadyfahmyful
@fadyfahmyful 7 жыл бұрын
why the integral of the second sin(t) is -cos(t) , I mean you did not use the same rules for both integrals of sin?
@changdagong3305
@changdagong3305 7 жыл бұрын
because we are integrating wrt v, so whatever t is just a constant, the first sin involve v so we must use cos
@angus8147
@angus8147 4 жыл бұрын
@@changdagong3305 you save my final term exam
@mojahedhamayel9870
@mojahedhamayel9870 4 жыл бұрын
You can tell me what equal it sin A . cosB = cos B . sin A = sin A . sin B = cos A . cos B =
@raudafaye1945
@raudafaye1945 4 жыл бұрын
please sir why did u use cost???
@blackpenredpen
@blackpenredpen 4 жыл бұрын
Because that’s the correct answer
@richellemaebaguasan3553
@richellemaebaguasan3553 5 жыл бұрын
Amazing!
@blackpenredpen
@blackpenredpen 5 жыл бұрын
Thank you!
@manishtechnicalclasses3340
@manishtechnicalclasses3340 5 жыл бұрын
Thank full video of the poly semester exam
@rahulgautam-ux9qx
@rahulgautam-ux9qx 4 жыл бұрын
inverse laplace transform of 1/(s^2+1)^2 please tell me solution this type of question.
@vasilisa4723
@vasilisa4723 3 жыл бұрын
Hi, have you found the solution? I'm still searching it :)
@carultch
@carultch Жыл бұрын
@@vasilisa4723 You can take s-derivatives of the Laplace of sine and cosine, and use the s-derivative property to find the Laplace transform of t*sin(t) and t*cos(t). Then set up a linear combination of A*cos(t) + B*sin(t) + C*t*cos(t) + D*t*sin(t). Solve for A, B, C, and D.
Ultimate Inverse Laplace Transform Study Guide
2:56:15
blackpenredpen
Рет қаралды 218 М.
Proof of the Convolution Theorem
18:10
blackpenredpen
Рет қаралды 110 М.
It works #beatbox #tiktok
00:34
BeatboxJCOP
Рет қаралды 41 МЛН
coco在求救? #小丑 #天使 #shorts
00:29
好人小丑
Рет қаралды 120 МЛН
Quilt Challenge, No Skills, Just Luck#Funnyfamily #Partygames #Funny
00:32
Family Games Media
Рет қаралды 55 МЛН
1% vs 100% #beatbox #tiktok
01:10
BeatboxJCOP
Рет қаралды 67 МЛН
You probably haven't solved a quartic equation like this before!
12:59
Inverse Laplace Transform, Sect 7.4#9
4:45
blackpenredpen
Рет қаралды 94 М.
Solving x^5=1
9:49
blackpenredpen
Рет қаралды 176 М.
❖ Convolution of Two Functions ❖
5:15
Patrick J
Рет қаралды 176 М.
the COOLEST limit on YouTube!
9:50
blackpenredpen
Рет қаралды 49 М.
2,000 People Fight For $5,000,000
24:45
MrBeast
Рет қаралды 17 МЛН
Approximating The Cos Function Challenge
6:29
SilentALume
Рет қаралды 88 М.
It works #beatbox #tiktok
00:34
BeatboxJCOP
Рет қаралды 41 МЛН