you explained two hours worth of lecture from my professor in 10 minutes. Amazing video
@ov3rkill5 жыл бұрын
Can we all just agree and appreciate his pen switch skills while writing besides of course his math skills.
@bizzle90413 жыл бұрын
Yes we can
@taehokang25513 жыл бұрын
Couldn’t focus cuz of that mesmerising skilllllll
@federicopagano65905 жыл бұрын
We shouldn't put + C for many reasons 1°) it's a definite integral 2°) the inverse laplace transform always it's a one to one operator unique result 3°) we could think this problem like the L^-1[L{ -1/2(L {sin (t)} }'s ]= - t .f (t) then f=1/2 (sen (t)/t) ✔
@chinmayabehera89616 жыл бұрын
cz its a definite integral we don't use c here .....your the best tutor I have ever seen....THANKS
@blackpenredpen6 жыл бұрын
chinmaya behera I am an instructor who looks young. :)
@Guru_Joe_Praise20237 ай бұрын
In just a few minutes I have understood Convolution theorem of Laplace Transform well done sir👍
@sergiorome482 жыл бұрын
I love these examples, so clear, so simple, so beautiful
@djalixos40087 жыл бұрын
i really like your way of explaining,a big salute from Morocco ☆
@password69757 жыл бұрын
i learn so much from your videos, not only do they help me with the subject you are teaching, but also with my math understanding in general, you are a great teacher.
@johnkarlorcajada31477 жыл бұрын
No +C because it is a definite integral.
@blackpenredpen7 жыл бұрын
LOL! YUP!!!!
@sugarfrosted20056 жыл бұрын
If you want to be pedantic, it's there, it's just eaten when you substitute the end points in.
@AlgyCuber6 жыл бұрын
and it’s an inverse laplace not an inverse derivative
@e.s.r58092 жыл бұрын
It's definitely cooler than partial fractions-- but the coolest part is not having to do partial fractions. 😉 Thank you!
@nurten5903 Жыл бұрын
I was struggling with a question in my textbook and decided to watch solution to another question, find this video and realized that you solved the same exact question that I was struggling with! I'm so happy thank you!
@jobalfred96034 жыл бұрын
GREAT TUTOR.Youve made understand this concepts better.Highly recommend.
@parthokr2 жыл бұрын
You are so happy when you found sin(t) as constant in v world. It made me happy too.
@aleksgornik2 жыл бұрын
i dont think you know how many engineering students your saving
@new-jj5il4 жыл бұрын
Excellent explanation Without neglecting any small mathematical step... Thanks
@ayamohamed7468 Жыл бұрын
I have watched this video before my exam and this exact example has come and I quickly remembered watching this video .. Thank you!
@JeffNkwilimba Жыл бұрын
I will consider you in my research report you have helped me alot in terms of calculus at the University, thanks very much ❤❤❤❤
@bench91185 жыл бұрын
if i just saw this before my exam, i would have got a perfect score........ nice bro...
@skwbusaidi5 жыл бұрын
Good . Also we can also use the fact that laplace of t f(t) = -d/ds ( F(s)) We can take f(t) = 1/2 sint
@utkarshanayak17103 жыл бұрын
Never heard of Convolution theorem. But you explained so easily 🙏🙏❤️. Thanks #blackpenredpen Btw no +C since it is a definite integral 😎
@Sednas Жыл бұрын
no, you do not need to put down +C, and that was hilarious 😂😂😂. I love your videos they are so useful but also funny sometimes.
@60_co_ayeshashaikh102 жыл бұрын
Well explained and also ur skill of switching pens is amazing, thank you for lecture😍
@mariogabrielsalvatierrafra45007 жыл бұрын
SUCH A GREAT EXAMPLE OF AN INVERSE LAPLACE TRANSFORMATION, I hope you can do examples of diferential ecuaions with the special functions like delta of dirac and others, i mean diferential ecuations where you have to use laplace transformation, keep doing those videos, they are so great
@chapahewawasam12224 жыл бұрын
Amazing teaching skill. Thank u so much ♥️
@ZARA_KEYS5 ай бұрын
Well teaching.... Anybody in 2024??
@blackpenredpen5 ай бұрын
Thanks!!!
@izuchukwuokafor81302 жыл бұрын
You are Superb Sir Blessings from the most high
@hoon87686 жыл бұрын
Thank you very very much!!!! From south korea
@ShinSeokWoo7 ай бұрын
Thank you exponentially !
@levialviter23023 жыл бұрын
Thx a lot. You've just saved me. Stay smart.
@maneeshkoru23123 жыл бұрын
You can also use L[t.f(t)]=-dF(s)/ds, complex differentiation theorem.
@algion243 жыл бұрын
An easier way to evaluate the convolution let I = sin(t)*cos(t) = int 0 to t (sin(t-v)cos(v))dv since convolution is commutative I = int 0 to t (cos(t-v)sin(v))dv add the 2 together 2I = int 0 to t (sin(t-v)cos(v)+cos(t-v)sin(v))dv this becomes an angle sum formula for sin 2I = int 0 to t (sin(t-v+v))dv = int 0 to t (sin(t))dv = vsin(t) from 0 to t = tsin(t) - 0sin(t) = tsin(t) divide both sides by 2 I = tsin(t)/2
@carultch Жыл бұрын
An easier way to evaluate it without using convolution. Use the s-derivative property of the Laplace transform, where L{t*f(t)} = -d/ds F(s). Take the s-derivative of sine's Laplace transform: d/ds 1/(s^2 + 1) = -2*s/(s^2 + 1)^2 Therefore: L{t*sin(t)} = 2*s/(s^2 + 1)^2 Multiply both sides by 1/2: 1/2*L{t*sin(t)} = s/(s^2 + 1)^2 Recognize the original transform we're trying to invert in the above. Thus: L-1 {s/(s^2 + 1)^2} = 1/2*t*sin(t)
@FutballFocusTV6 жыл бұрын
a big salute from Berkeley ,CA keep the good work
@blackpenredpen6 жыл бұрын
Glad to help!
@FutballFocusTV6 жыл бұрын
blackpenredpen . Thank you sir , i got this question as well . Use convolution theorem to find the inverse laplace transform of the following. f(s) = 1/s+p)(s+q) Do you have an email ?
@FutballFocusTV6 жыл бұрын
blackpenredpen my email is futtaingrp40@gmail.com
@xongram31394 жыл бұрын
Thank you so much....it was a 10marks question in my exam
@ANANDYADAV-sc1se2 жыл бұрын
Cool explanation , I like it
@stephanm.tjaden38875 жыл бұрын
You are awesome! You take something that seems so complicated and make it very , very easy to understand.
@BK-dx3cp3 жыл бұрын
He’s a great tutor!!
@mrinmoybhaduri96666 жыл бұрын
You explained it so good iam from india, thnks
@mariogabrielsalvatierrafra45007 жыл бұрын
Such a great video and no we don't need to put +C because the convolution is a definite integral so the C is not necesary
@sunset13946 жыл бұрын
exam tommorow and here he comes with his black pen and red pen and saves my day.
@jarikosonen40794 жыл бұрын
The plus C could be allowed, but might depend on the initial conditions. The problem is that how to make laplace of sin(x)+2 ? It doesn't work maybe. Then if inverse laplace should give sin(x)+2, how to? This method seems to work, but requires a lot of calculation. Basically signals can be transferred both on time and signal axes. sin(x) becoming sin(x-t0)+C if transferred in both axes. One could use sin(x)+2×u(t), but that wouldn't be same as sin(x)+2, except for t>=0. If Laplace valid for t>=0 only it seems maybe also reason why u(t) should be used instead. But one could add just 2 if the offset of 2 is certain. The calculation without offset is easier maybe and doing things around the 0 instead of 2 is more practical in this math. Like solving x^2 + 3x + 1 = 0 rather than x^2 + 3x + 3 = 2. You could tune the 2nd degree polynomial equation solving to work with right side =2 rather than =0, but it would get more complicated. Can you calculate inverse laplace transform of s^2/(s^2 + w^2) as an example case also?
@robinrotich1184 жыл бұрын
waauh amazing math lesson i have understood everything on convolution
@emmanueljoseph85402 ай бұрын
Can UNIBEN STUDENTS gather here and sign attendance
@jun60037 жыл бұрын
thanks! it's very helpful !!
@ernestamoah2612 Жыл бұрын
Thank you sir.
@carlos199613ful7 жыл бұрын
Greetings from Honduras! Youre a genuis man !
@eseranceese93053 жыл бұрын
Thanks! This is very helpful!. Can i ask what if the equation is inverse laplace of [ 1/(s²-9)²] is it using convolation to solve it?
@eseranceese93053 жыл бұрын
Uhm also what if the s on the top of it squared? Like s²/(s²+1)²?
@carultch Жыл бұрын
@@eseranceese9305 A method I recommend, is to assume it is an arbitrary linear combination of t*sin(3*t), t*cos(3*t), sin(3*t), and cos(3*t). Then take the Laplace transforms of each of component function, using the s-derivative property of Laplace transforms. Set up the linear combination with undetermined coefficients, and use algebra to solve for them. L{cos(3*t)} = s/(s^2 + 9) L{sin(3*t)} = 3/(s^2 + 9) L{t*cos(3*t)} = -d/ds L{cos(3*t)}= (s^2 - 9)/(s^2 + 9)^2 L{t*sin(3*t)} = -d/ds L{sin(3*t)}= 6*s/(s^2 + 9)^2 Let the Laplace transform we're trying to invert, equal the following, and solve for A, B, C, and D: A*s/(s^2 + 9) + 3*B/(s^2 + 9) + C*(s^2 - 9)/(s^2 + 9)^2 + 6*D*s/(s^2 + 9)^2 For 1/(s^2 + 9)^2: 1/(s^2 + 9)^2 = A*s/(s^2 + 9) + 3*B/(s^2 + 9) + C*(s^2 - 9)/(s^2 + 9)^2 + 6*D*s/(s^2 + 9)^2 1 = A*s*(s^2 + 9) + 3*B*(s^2 + 9) + C*(s^2 - 9) + 6*D*s 1 = A*s^3 + 9*A*s + 3*B*s^2 + 27*B + C*s^2 - 9*C + 6*D*s A = 0 3*B + C = 0 27*B - 9*C = 1 D = 0 Solution for B&C: B = 1/54, C=-1/18 Thus: inverse Laplace of 1/(s^2 + 9)^2 = 1/54*sin(3*t) - 1/18*t*cos(3*t)
@thommythomas31233 жыл бұрын
good explaination
@queenqueen46626 жыл бұрын
Thank u so much sir this video helps me a lot 🙏🙏
@darcash17387 ай бұрын
Just watching this for fun, seems pretty cool. can someone explain the step from sint * cost? why does the argument of sin become "t-v", whereas for cos it becomes simply "v"? and perhaps i should know what is being convoluted in this convolution 😂
@منوعات-ح8ع5 жыл бұрын
Amazing bro Thanks a lot
@helldogforever6 жыл бұрын
Your video helped.
@SuHAibLOL7 жыл бұрын
integral transforms are just great
@blackpenredpen7 жыл бұрын
Yes!
@holyshit9227 жыл бұрын
Complex partial fraction will work We could also use differentiation
@blackpenredpen7 жыл бұрын
yup
@daynaladd88945 жыл бұрын
Wow amazing! Thank you so much!
@الاستاذأزهرمحمدماجستيرعلومرياض7 ай бұрын
Integrate denominator and take inverse to the result to get F(s) and the result is - d/ds F(s)
@andymorejon2am6 жыл бұрын
This guy is funny af, congrats on your talent
@solinothman40945 жыл бұрын
I love doing math with your videos You're Amazing ❤
@teo97judo6 жыл бұрын
Hello Steve, my name is Teo and I come all the way from Greece. I was trying to solve an inverse Laplace and googled for help so I stumbled upon this video.The problem is I can't exactly understand how to use this method on my problem. The problem is inverse Laplace of (s+3)/(s^2 + 4)^2 . I tried the partial fraction method as well but it seems that it can't be divided. I'd love to hear back from you with some help because I'm sure it will take you 5 minutes to solve it. Thank you for your time anyway.
@DrQuatsch5 жыл бұрын
The first thing that comes to mind is separating it. L^-1{s/(s^2 + 4)^2} + 3L^-1{1/(s^2 + 4)^2}. The first part is pretty much the same as in the video, but you only have s^2 + 2^2 in the denominator, so that results in tsin(2t)/4. There's an extra factor of 1/2, because you have to match the 2 on the top for the sine part. For the other fraction you will have to calculate a convolution of two sines: 3(L^-1{1/(s^2 + 4)} * L^-1{1/(s^2 + 4)}) = 3/4(L^-1{2/(s^2 + 2^2)} * L^-1{2/(s^2 + 2^2}) = 3/4(sin(2t) * sin(2t)).
@liyanaminaj23093 жыл бұрын
"don't be lazy", it get me LOL
@maayoufamoez22176 жыл бұрын
all maths is here in this equation. good example thank you but i like the way you play with pens :) :)
@hungmai7533 Жыл бұрын
thank you so much sir
@flickboxextra3127 Жыл бұрын
Very good
@holyshit9222 жыл бұрын
3:14 , integration by parts will work if you expand sin(t-v) to get two integrals
@sushantlakra67156 жыл бұрын
excellent sir ...
@mutalejohn52952 жыл бұрын
Thank you!
@IrfanNasir6 жыл бұрын
Thank you very much sir
@hashem42876 жыл бұрын
Thank you very much
@Novak26113 жыл бұрын
One can simply use the derivative of Laplace transform of cos: L'(f)=-L(tf) (i am not talking about Laplace of derivative)
@a.s.l7114 ай бұрын
just how does the laplace work from 1/(s+1) becomes e^-t. what is the logic behind the conversion.
@andremiller4826 жыл бұрын
You're awesome dude
@sydbugnano84313 жыл бұрын
I love how much he loves math
@Grundini917 жыл бұрын
It's a definite integral, no +c
@diegonavia14046 жыл бұрын
wena hermano greetings from chile
@mr.hridoy2456 жыл бұрын
the lovely way to do this math, i like your your way to solve,thank you sir
@demenion35217 жыл бұрын
you should probably add an argument after the laplace transform like L{f(t)}(s). otherwise one has always to remember which variables you use normally. And also: i am used to the convolution over the whole reals. is it actually the same thing as the integral from 0 to t?
@jerryjin58715 жыл бұрын
That was amazing!
@richellemaebaguasan35535 жыл бұрын
Amazing!
@blackpenredpen5 жыл бұрын
Thank you!
@manishmodak17265 жыл бұрын
Do it for the minus sign too without using the convolution theorem please
@harvindyadav8624 жыл бұрын
s/(s^2+a^2)^2= (-0.5)*d/ds{1/(s^2+a^2)} Now apply derivative formula.
@himanshu118766 жыл бұрын
2nd method #dis function is derivative of (S^2+1)^-1,so inverse function would be multipled by t
@anishachoudhury_6 жыл бұрын
Can u just explaim why did he use sin t-v instead of sint in 4th step
@NoobMaster-yw6eo5 жыл бұрын
@@anishachoudhury_ it's just how the convolution is done
@NoobMaster-yw6eo5 жыл бұрын
Hey could u write down how would u use that method on this is function cuz am kinda lost with it
@mojahedhamayel98704 жыл бұрын
You can tell me what equal it sin A . cosB = cos B . sin A = sin A . sin B = cos A . cos B =
@helloitsme75537 жыл бұрын
no +c, cause any function has a unique La place transform and any La place transform belongs to a unique function
@blackpenredpen7 жыл бұрын
yea!
@suzeetasuzee90187 жыл бұрын
can u please upload more examples of convolution theorem.......
@adityapahalvan64845 жыл бұрын
Sir make the video on complex integration,contour
@mammu3635 Жыл бұрын
Find L inverse [s/(s+4)²] plzz answer for this sir I have exams this month plzz 🙏 sir
@carultch Жыл бұрын
Given: s/(s + 4)^2 Add zero in a fancy way, to form a term we can cancel: (s + 4 - 4)/(s + 4)^2 = (s + 4)/(s + 4)^2 - 4/(s + 4)^2 = 1/(s + 4) - 4/(s + 4)^2 The first term inverts as e^(-4*t). The second term requires us to use the s-derivative property to unpack it. In general, L{t*f(t)} = -d/ds L{f(t)}. The expression we have to unpack, is related to the s-derivative of 1/(s + 4), so differentiate this: -d/ds 1/(s + 4) = 1/(s + 4)^2 Thus: L-1{-4/(s+ 4)^2} = -4*t*e^(-4*t) Thus, the solution is: e^(-4*t) - 4*t*e^(-4*t)
@georgeharry77296 жыл бұрын
Love you Sir
@oussamaelajjaj61375 жыл бұрын
Tfoe gay
@manishtechnicalclasses33404 жыл бұрын
Thank full video of the poly semester exam
@enricoperrotta56762 жыл бұрын
Awesome
@sichen11514 жыл бұрын
i will pay good amount of money to take your class
@shreetimohapatra4142 Жыл бұрын
thank uuu
@ChickenJY6 жыл бұрын
Prof, may I request a Fourier Transform/ Inverse FT videos from you ?
@Omegas887 жыл бұрын
you are a god
@santiagocas36834 жыл бұрын
Broo, I got a big question, how to know, where put, t-v, for expmle, cos(t-v)sin(v), ¿Cómo sabes donde poner (t-v), ?¿ Podría haber sido cos(t-v)sin(v)? Disculpa el inglés, no soy nativo.
@carultch Жыл бұрын
It is completely arbitrary which one gets v, and which one gets t-v, since convolution is commutative.
@rahulgautam-ux9qx4 жыл бұрын
inverse laplace transform of 1/(s^2+1)^2 please tell me solution this type of question.
@vasilisa47233 жыл бұрын
Hi, have you found the solution? I'm still searching it :)
@carultch Жыл бұрын
@@vasilisa4723 You can take s-derivatives of the Laplace of sine and cosine, and use the s-derivative property to find the Laplace transform of t*sin(t) and t*cos(t). Then set up a linear combination of A*cos(t) + B*sin(t) + C*t*cos(t) + D*t*sin(t). Solve for A, B, C, and D.
@ROSBELMARIABCE7 жыл бұрын
thanks dude
@ronaldrosete40864 жыл бұрын
By the way, what's the Laplace of Y(s)/X(s)?
@carultch Жыл бұрын
It's called the transfer function. The function that relates the output to the input of a linear time independent dynamic system, assuming X(s) represents the Laplace transform of the input, and Y(s) represents the Laplace transform of the output.
@gaminghub06156 ай бұрын
How to do this without using convolution thm
@fadyfahmyful7 жыл бұрын
why the integral of the second sin(t) is -cos(t) , I mean you did not use the same rules for both integrals of sin?
@changdagong33057 жыл бұрын
because we are integrating wrt v, so whatever t is just a constant, the first sin involve v so we must use cos
@angus81474 жыл бұрын
@@changdagong3305 you save my final term exam
@LoneWolf-zj8it5 жыл бұрын
exam tomorrow, wish me luck :-)
@mohan153doshi7 жыл бұрын
The best way to do convolution is with bprp - yay!!!!