Note: I should have used coth^-1 instead since the input 1/sqrt(3)*(x+1/x) is NOT in between of -1 and 1
@gazalisameer41735 жыл бұрын
Can someone help me with integral 1/sqrt(a + bsinx)
@axelcastillo74325 жыл бұрын
blackpenredpen But, isn’t coth^-1 equal to tanh?
@fmcore5 жыл бұрын
@@axelcastillo7432 No. it is not reciprocal. It's an inverse function.
@rushikesh33635 жыл бұрын
Your note is totally wrong. .. Use their standerd FORMULA
@enriqueiniguez68935 жыл бұрын
GAZALI SAMEER 2(a+bsin(x))^1/2+C
@arjavgarg58016 жыл бұрын
Put more JEE in the title = more views
@integrationbee25116 жыл бұрын
You can see my channle for JEE integrals. I have already solve this integral few months ago. See: kzbin.info/www/bejne/m6bKeoKppsZ8brM
@arjavgarg58016 жыл бұрын
Cauchy Riemann I am a JEE aspirant too BTW
@0ArshKhan06 жыл бұрын
@@arjavgarg5801 Oh, all the best for jee, I'm a first year student at bits.
@arjavgarg58016 жыл бұрын
Cauchy Riemann did you sit for it? What rank?
@0ArshKhan06 жыл бұрын
@@arjavgarg5801 A useless 10k+ doesn't get you anything in IITs. Anyway, let's not dig the past :-P
@bapolino7336 жыл бұрын
Sleeping at 3 am ? No Math is more important!
@DiegoMathemagician6 жыл бұрын
Yay!
@diegofcm62016 жыл бұрын
Bapolino 1:30 for me, lol
@ricardomahfoud6 жыл бұрын
Ikr I have been up all night, 6am watching this right now
@WardForFun6 жыл бұрын
@@ricardomahfoud DUDE ME TOO
@sowmyag51426 жыл бұрын
Yes!!!🥂
@rishavsinha33765 жыл бұрын
It's a custom for physics students to binge watch videos on difficult integrals.. You never know when it will come in handy.
@sheetalprakash98276 жыл бұрын
I don’t know anything about Calculus but I just like staring at all those letters and numbers.
@DragonKidPlaysMC6 жыл бұрын
Microwave Burrito you should check out the essence of calculus by 3blue1brown
@sheetalprakash98276 жыл бұрын
DragonKidPlaysMC Ok thanks I’ll see. I’m only in grade 8 so I’ll probably start learning it next year but thanks for the video. It might give me a head start next year.
@josephkitchen30596 жыл бұрын
It’s how I fell in love with math.. became an engineer. Just a curiosity.
@sheetalprakash98276 жыл бұрын
Artorias Thugz Oh cool. Hope you have a great life.
@shilpimitra53426 жыл бұрын
4 years back i was just like u
@martinmetodiev8696 жыл бұрын
This guy's enthusiasm about solving integrals is amazing. I love watching this channel
@ssdd99116 жыл бұрын
i DARE u 2 do the integral of 1/(x^8+1)
@blackpenredpen6 жыл бұрын
If you make a tweet asking me to integrate 1/(x^8+1) and the tweet gets 2019 likes, then I will. : )
@cavver35236 жыл бұрын
That's a great idea lol
@Ferolii6 жыл бұрын
@@blackpenredpen You will be asked soon to the 1/(x^10+1) integral hahaha
@visheshmangla26506 жыл бұрын
Can be done by contour integration or just break it to a^2- b^2 using complex numbers.
@Jacob-uy8ox6 жыл бұрын
This would make me cry of happiness, like if you like super insane af integrals!
@arjavgarg58016 жыл бұрын
Yeah, I would rather just differentiate the options
@deepcvs6 жыл бұрын
You would take a lifetime
@satyam28576 жыл бұрын
That's my way..
@satyam28576 жыл бұрын
Anudeep CVS it takes 10 minutes.. So if you are done with all questions.. U can do that
@mdghufranalam73696 жыл бұрын
I know but you will loss time if a small mistake happen. Differentiate the same answer and get question you cannot simplify
@arjavgarg58016 жыл бұрын
Not in mains
@angelmendez-rivera3516 жыл бұрын
Find the antiderivative of 1/(x^n + 1) with respect to x. Then you will not be asked to do it for 1/(x^8 + 1) and 1/(x^10 + 1).
@rayandy2460 Жыл бұрын
I wonder is there a recursive formula to derive the above integral.
@jimspelman85387 ай бұрын
@@rayandy2460 I was wondering the same thing, but I don't think there is.
@obiwan89726 жыл бұрын
Now this is a standard JEE integral:)
@blackpenredpen6 жыл бұрын
Obi Wan Yup
@leif10753 жыл бұрын
@@blackpenredpen Who would come up with such a convoluted solution and HOW?? I hope you can PLEASE respond for once, please. It would mean alot.
@bigbrain2962 жыл бұрын
@@leif1075 well, x+1/x is a standard strategy in a competitive integral environment and the other integrals are standard textbook. The partial fraction in the beginning was also a logical first step. It's all about recognising which technique to be applied where.
@leif10752 жыл бұрын
@@bigbrain296 i don't see how it could be standard..and if you've never seen it before..would anyone ever think of it? I doubt it.
@wqltr18222 жыл бұрын
@@leif1075 I think there are just some people in the right place at the right time, and have a knack for clever puzzles and stuff, and creating problems which have smart solutions. They might not even understand why some rules or tricks are in place, or why they work, but they love using them in smart ways regardless of context. Those tricks are shared, and after that its one of those things, where after you see it once or twice or thrice, you kind of get the idea. There is not really a world between not knowing the trick and knowing it.
@oledakaajel6 жыл бұрын
First blue pen and now green pen? This is getting out of hand.
@cavver35236 жыл бұрын
BlackpenRedpenBluepenGreenpen. It's going to be a Rainbowpen
@chiragraju8215 жыл бұрын
NOW THERE ARE TWO OF THEM
@avaneshprasan64923 ай бұрын
from the screen to the ring to the pen im the king
@sreenandhan25446 жыл бұрын
Integral of ( 1/(u^2 - a^2)) is also equal to {1/2a} {log[ (u-a) /(u+a)]}+c for those who don't know about hyperbolic tangent, like me. And off course the video was amazing!
@dabulls1g6 жыл бұрын
Feels awesome your integration tables know about hyperbolic tangent, not you lol.
@sreenandhan25446 жыл бұрын
But does it say what hyperbolic tangent really is? :)
@abdiismail45465 жыл бұрын
I don't think so. The derivative of ln {(u-a)(u+a) } = 2u/(u^2 -a^2)
@tomatrix75254 жыл бұрын
This is the approach used on wolfram, yes. Nice observation
@superj92206 жыл бұрын
With all these similar ones i wanna see a 1/(x^n +1) integral generalization lol.
@TheYou14835 жыл бұрын
Don't know about the indefinite but it's actually generalized for definite integral with limits ranging from 0 to infinity
@boringtofu44335 жыл бұрын
I remember doing a reduction formula for this its pretty easy to prove
@arvindupadhye61724 жыл бұрын
For definite integral with limits 0 to infinity, it becomes the beta function
@soheilshirmohamadi34496 жыл бұрын
Oh bro watch out it can't be arctanh because automatically one over x or (1/x) omits zero which makes the denominator zero and you probably know that arctanh is defined when abs(x)≤1 and this range of x contains zero so that's why arccoth is precisely the one and only choice without having the bounds of integration, hope you'll see this☺
@blackpenredpen6 жыл бұрын
Ahhhh, I forgot to check the min. of (x+1/x)/sqrt(3) You are right, I should have used arcoth, thank you!!!
@blackpenredpen6 жыл бұрын
For anyone who's interested, check out the derivative of arctanh vs. arcoth kzbin.info/www/bejne/fYHZf2iLjK-fo6c
@soheilshirmohamadi34496 жыл бұрын
@@blackpenredpen oh no problem, in fact thank you for these fabulous math videos:-)👌👍
@officielsalah58386 жыл бұрын
Your note is not complet you forget u' in the top
@kartikkalia016 жыл бұрын
I liked this comment to just look smart.
@RaviKant-vn5wb6 жыл бұрын
Nice approach to question..Love from INDIA 🇮🇳 😊
@shreyasgavhalkar575 жыл бұрын
There is another formula for integral of 1/x^2-a^2 which is 1/2a X ln |(x-a)/(x+a)|
@nicolesmith27825 жыл бұрын
I love your videos! I decided to take on calculus 2 this semester and you motivate me to continue with math :))
@blackpenredpen5 жыл бұрын
Awww thank you! I am very happy to hear it! Best of luck and enjoy calc 2!
@animeshpradhan56836 жыл бұрын
Please do the integral 1/(x^7+1)
@123pok456ey6 жыл бұрын
Or find the general formula of indefinite integral of 1/(1+x^n)
@animeshpradhan56836 жыл бұрын
I think it will b a reduction integral
@123pok456ey6 жыл бұрын
I've done in in the complex world.
@animeshpradhan56836 жыл бұрын
@@123pok456ey nth root of unity.. ?? De moivres
@marks96186 жыл бұрын
wc k Residues?
@peerdox22755 жыл бұрын
in reality during practice i just differentiatated the 4 options and checked if any of them match the integral, instead of actually integrating
@Grassmpl5 жыл бұрын
Lots of people are not familiar with inverse hyperbolic trigs. Thus we can use partial fractions to compute that 2nd integral
@MrKhan-dw9vh6 жыл бұрын
"And let me curse this integral now" you are so funny I like it 😂
@metalslug975 жыл бұрын
I wish I had you as my recitation teacher. You're an effective teacher!
@ahb58195 жыл бұрын
You are meant to solve this in 59 sec
@jadsonalves75906 жыл бұрын
You know things will get funny when there are not only the black and the red pen 😂😂😂
@javierfromvenezuela6 жыл бұрын
sorry for my ignorance, but why isn’t he using integration by parts? is it because it can’t be applied or just to show this method?
@ernestschoenmakers81814 жыл бұрын
There are many ways to solve this integral like one can factor 1+x^6 into (1+x^2)(x^2-sqrt(3)x+1)(x^2+sqrt(3)x+1). Now with partial fraction decomposition this integral can be solved.
@emmanuelokafor2598 Жыл бұрын
I can't believe I just discovered this channel. This guy is good!! Fucking good I tell you!! You will save my life for the next few years.
@Peter_19865 жыл бұрын
blackpenredpen always has interesting math problems that require a lot of thinking.
@dylanf29805 жыл бұрын
I got an eel i buried its guts sprouted a tree now you got coconuts.
@soulofraven8165 жыл бұрын
I can't understend English very well , but i can understend the integral . So i thought the mathematic is the Universal lenguague :3 🖤 good joob !
@themanagement696 жыл бұрын
Love that hyperbolic trig identity, nothing more satisfying than integration.
@maehmaehmaeh95606 жыл бұрын
Just substract x^4 on the top and bottom, then you can factorize the top and cancel the (x^2+1); then you only have to integrate x^2-1 and you get 1/3x^3-x. Its really easy
@ernestschoenmakers81815 жыл бұрын
You're wrong cause you change the integral into a completely different one which isn't the same anymore.
@prahladverma79795 жыл бұрын
The 1/x^4-x^2+1 part I had solved a few weeks back. I’m glad to see blackpenred use the exact same method I’d figured out then!! Gives me lot of confidence:):):)
@ronjamac6 жыл бұрын
Wow. This takes me back to my school days in the 1960s. Just wondering now where I could find a real live practical application.
@blackpenredpen6 жыл бұрын
ronjamac Making KZbin videos : )
@pratyushsharma66555 жыл бұрын
And there's ur 10 min gone with 1hr for math section in the exam having 30 questions I think 😆
@yaleng45975 жыл бұрын
4:58 never thought of that, genius
@JohnSmith-iu3fc5 жыл бұрын
You are better now than before. Congrats!
@ghotifish18385 жыл бұрын
Me with my middle school maths knowledge: how the heck did you get tan in an equation like that.
@chessandmathguy5 жыл бұрын
Excellent video. Everything makes sense. Thanks for posting!
@shivimish99626 жыл бұрын
Where is the video for the inverse hyperbolic tangent formula you used? Have you made it?
@GhostyOcean6 жыл бұрын
kzbin.info/www/bejne/fYHZf2iLjK-fo6c
@shivimish99626 жыл бұрын
@@GhostyOcean thx
@pranjaldas17625 жыл бұрын
Your technics are amazing
@AbouTaim-Lille Жыл бұрын
We used to study in our first year the integrals of fractions where the numerator is a polynomial of degree strictly lower than the degree of the denominato (otherwise you just devide). And we have to write the denominator as a multiplication of polynomials of degree 1 and 2. Depending on the theorem that every polynimial can be written as multiplication of terms of the form (X+a) or (x²+ax+b) , ∆
@chahbiachraf57036 жыл бұрын
U can resolve it with the theorem of residue (changing the function into f(Z)=1/z^6+1) and it s a holomorphic function ....
@Grassmpl4 жыл бұрын
How? This isn't a definite integral. There are no bounds.
@OonHan6 жыл бұрын
Twice is better than once, isn’t it?
@blackpenredpen6 жыл бұрын
Oon Han it is!!
@hiran17245 жыл бұрын
Is this a k-pop reference?
@hamzaalsamraee30546 жыл бұрын
One can use a double integral and then the gamma function to get a general form for the definite integral of 1/(x^n+1). The derivation is very elegant and short.
@Infinite_Precision5 жыл бұрын
Dude, u're great, truly love your videos!
@stephenphelps9206 жыл бұрын
5:02 turn on the subtitles
@jianyuchen88796 жыл бұрын
You really have a good Algebra
@ashishgiri23734 жыл бұрын
I dont know is it right or not but formula wil work easily 1/x2+a2would be tan ^-1(x/a)1/a will it be right
@hashblack113 жыл бұрын
Exactly i thought of the same!
@hashblack113 жыл бұрын
I thought the answer was supposed to be tan^-1 x^3 +C
@ernestschoenmakers81812 жыл бұрын
@@hashblack11 Incorrect.
@r.t.mishra77865 жыл бұрын
This is one of the easiest problem of the toughest exam of the world iit jee
@ojasthengadi96815 жыл бұрын
Lol kid this not at all easiest this quite a good one and almost falls into tough category bcoz the amount of time it takes to solve it
@marcovillalobos51776 жыл бұрын
Me and my friends love your channel
@rocketboyjv54745 жыл бұрын
Such a big complicated answer for a seemingly simple integral. Just imagine if the +1 wasnt there it would be so much easier
@AhmedHan6 жыл бұрын
First 1/(1+x^2), then 1/(1+x^4), and now 1/(1+x^6). What is next, 1/(1+x^8)? For the sake of goodness, jus solve 1/(1+x^n) once and for all!
@ernestschoenmakers81814 жыл бұрын
It's not that simple the higher the nth power the harder it becomes but in general it can be solved by using complex numbers.
@sudhanvab6 жыл бұрын
At 10:43. Why dont you use the identity integral 1/(x^2-a^2). = (1/2a) log((x-a)/(x+a))
@dylanjones49156 жыл бұрын
"One always likes to be on the top" -blackpenredpen
@holyshit9225 жыл бұрын
for |x|1 you can use tanh^{-1}(-1/x)
@qu2k4585 жыл бұрын
Love the way you and subtracting values to complete squares! Its very creative and I hope that i might someday be as proficient at it as you are blackpenredpen 🙏🏼. Great Videos.
@carolynrigheimer15746 жыл бұрын
Well done. I enjoyed your enthusiasm.
@FernandoRodriguez-et7qj5 жыл бұрын
Your shirt makes you look like a nurse
@sowhanQ5 жыл бұрын
pretty sure this appears in my exams once
@rene_mpo96436 жыл бұрын
Can you do the integral from e to pi x^y=1 solve for the y
@angelmendez-rivera3516 жыл бұрын
What? Your question does not make sense with the phrasing.
@0ArshKhan06 жыл бұрын
integral from π to e x^y dx = 1 Hence, (e^y-π^y)/(y+1)=1. Or e^y - π^y = y+1 which can be solved by a numerical method like Newton-Raphson method... Solution is close to y= -0.934
@binitkumarsingh82965 жыл бұрын
U are a good technical teacher.u should start teaching for jee preparation
@amoghbharadwaj3825 жыл бұрын
No way. Don't drag him into that mess. This channel is for math enthusiasts not math exam enthusiasts
@richardbaek9766 жыл бұрын
I wish i could understand this beautiful language
@XanderGouws6 жыл бұрын
idk if ur memeing, but you'll get there eventually! There are plenty of resources to learn calculus online. I personally reccomend "Professor Leonard" (KZbin) and "Paul's online notes" (website).
@anand.suralkar6 жыл бұрын
You must have been born in India those things are in school in indian maths syllab calculas is the thing that every indian should go through one day in their lifetime
@kanishksharma17165 жыл бұрын
@@anand.suralkar except those who take arts and commerce without maths.
@Goku17yen6 жыл бұрын
God damnit i remeber doing this integral and really getting to know partial fractions afterwards, the algebra way is soooo much better lmao :D
@omkarsinghchauhan30536 жыл бұрын
i love that mike he holds in his hand
@AS-hm4sh4 жыл бұрын
This is Pretty cool ♥
@shravankumardilip71466 жыл бұрын
Please do an integral of log(cosx) from [0-(π/2)]
@the_number_one5 жыл бұрын
Most useless things to do in life
@andres.robles66 жыл бұрын
Más integrales así 💙
@emmanuelokafor2598 Жыл бұрын
How did multiplying by 1/2 eliminate the need for writing -1 around 4.58. I don't get it.
@GreenKookie56 Жыл бұрын
With that being said, the intergral of 1/1+x⁶ is 50 times less trivial than 1/1+x⁵.
@SuperKnowledgeSponge6 жыл бұрын
are you sure it is tanh^-1 ? (x+ 1/x)^2 minus (sqroot of 3)^2 can you show me a video of how a tanh inverse is the answer? Please and thank you.
@golddddus6 жыл бұрын
Одлично, ја сам одушевљен!
@skippycavanaugh31486 жыл бұрын
In what way is this a Jee integral? My school exam had a similar question to this.
@harshaddeshmukh37535 жыл бұрын
Advance paper is held each year you have a lot of content.
@blackpenredpen5 жыл бұрын
Link please?
@harshaddeshmukh37535 жыл бұрын
@@blackpenredpen you just type on Google "IIT JEE advanced paper 20xx and you can download it.
@adityashankar52675 жыл бұрын
2:01 hey how does x2 -1 cancels?
@snnwstt6 жыл бұрын
Given that a polynomial of (real coefficients) can be a PRODUCT of polynomial of degree 2 and degree 1, call them the first factors ( a little bit as decomposing an integer into its prime factors); given that someone can find Pn(x) = Product of the said "first factors", Qi(x) (with the degree of each Qi is at most 2); given that someone can find the coefficients in the expression 1/Pn = (Ax+B)/Q2i + C/Q1i (if you prefer: when Qi of a degree 2, is involved in the denominator, then the numerator has a linear term (2 constants) while for Qi being a linear term in the denominator, then the numerator has only a constant); then, the original integral is reduced to a SUM of integrals of the kind (ax+b)/(x2+cx+d) and of the kind a/(x+b) for any integral degree n ( >=3) of the initial polynomial expression. Sure, you have to deal with the discontinuities when the limits' range spans over zero(s) of Pn.
@chunfaimok7676 жыл бұрын
1:11 1 always likes to be ON THE TOP www. I love you, man.
@blackpenredpen6 жыл бұрын
: )
@Jacob-uy8ox6 жыл бұрын
Omg, what a beautiful way to end up the year
@sowmyag51426 жыл бұрын
Yay!!
@afafsalem7396 жыл бұрын
Great job, plz we would like more of this kind of integrations , thank you very much.
@integrationbee25116 жыл бұрын
You can see my vedies. Such: kzbin.info/www/bejne/m6bKeoKppsZ8brM
@greatestever69836 жыл бұрын
it reminded me of the laplace transform when you were adding zeros in the numerators and denominators
@mamtaprajapati27106 жыл бұрын
Can you integrate sin(x^x) please? Or sin(x^x)/(x^x)....
@SonGoku-rx1fo6 жыл бұрын
It would be sin (x^x) Sin(x^x)= x^x sin(x^x)[ 1 + log x ] I guess I'm right Sin(x^x)= sin (x^x) [ 1 + log x ] I guess I'm right
@SonGoku-rx1fo6 жыл бұрын
It's not integration btw it's differentiation , ok ?
@mamtaprajapati27106 жыл бұрын
@@SonGoku-rx1fo But still thanks for that....
@anand.suralkar6 жыл бұрын
@@mamtaprajapati2710 lol
@amoghbharadwaj3825 жыл бұрын
@Simon Slade Bro no offense but can you not read? It clearly says "integrate" in the comment not "differentiate"
@PranavvSalunkhe5 жыл бұрын
It took him 13 minutes to solve this questions whereas in reality students have to solve it in less than 2 minutes ....
@blackpenredpen5 жыл бұрын
Yea.
@axelcastillo74325 жыл бұрын
Ctrl+c Ctrl+v Takes less than 30 seconds, it won’t look fishy in the test, i promise lol
@pramodm35405 жыл бұрын
Because he has to explain it. I know 2min is challenging.
@paulfaigl83295 жыл бұрын
how did you convert x^6 + 1 into the two multiplikants? This eludes me but it is obviously correct.
@shobitsagar12115 жыл бұрын
multiply and divide by x²+1
@TheDoubleEdgeSword6 жыл бұрын
2nd line....how x^2/(x^3)^2+1 came from?....and where is x^+1 of the first line?
@Patapom36 жыл бұрын
Amazing!
@Aruthicon6 жыл бұрын
I like how you wrote the inverse hyperbolic tangent backwards.
@PeterNjeim6 жыл бұрын
I like how our standard notation has us write the inverse hyperbolic tangent backwards.
@theomolfess72726 жыл бұрын
No it’s only because you speak backwards in English. For example, in French we say tangente hyperbolique ;)
@AnuragKumar-io2sb6 жыл бұрын
So good😄
@yuvrajpreetsingh5915 жыл бұрын
Why did you not use the formula for Integration of 1/x^2+a^2 = 1/a arctan x/a + C?
@YorangeJuice3 жыл бұрын
4:39 what was that sound?
@emmanuelokafor2598 Жыл бұрын
How I learned to resolve integrals of the form 1/(z²-a²) is 1/2A(ln((z-a)/(z+a)). I wonder if it's related to what was written around 11.16
@Fatihuuuu3 жыл бұрын
bu adam bizim ayt matematik sınavına girse 10 net yapardı
@LaerteBarbalho Жыл бұрын
Black pen Red pen, also featuring Blue and Green pens...😄
@Sriiiiiiiiiiiiiiiiiiiiii1235 жыл бұрын
Hey, you could have wrote x^6 as x^3 the whole square and then used the direct formula of 1 over x square + a square where x is x^3 and a=√1 right?
@franciscosoto22766 жыл бұрын
Integral of 1/(x^n + 1) next! That would be nuts!
@ernestschoenmakers81812 жыл бұрын
Thuis cannot be solved in a simple wat but it can be done by complex numbers.
@chestercarbungco29675 жыл бұрын
1:02 pls answer me where -x^2 came from? Pls need help. Thanks!
@radhikasomani46425 жыл бұрын
He just created a difference by adding x^2 and subtracting x^-2
@abdraoufabusoua80045 жыл бұрын
This is amazing. Isn’t math beautiful? .
@kurosakitong5 жыл бұрын
Why didn't he add +1 at 2nd step ?
@BigDBrian6 жыл бұрын
Maybe it'd be good to define a function that's basically the inverse hyperbolic tangent & inverse hyperbolic cotangent together. Since their domain doesn't overlap, it's a simple to define piecewise function.
@angelmendez-rivera3516 жыл бұрын
mrBorkD This is easy to do with the complex numbers, I am fairly certain. You can define an analogous real-valued function, but it would not be a very nice function to work with.
@angelmendez-rivera3516 жыл бұрын
Actually, it is better to not reference the inverse hyperbolic functions for this at all and instead use partial fraction decomposition. The catch is that [(tanH)^(-1)](z) + sign(z - 1)•iπ/2 = [(cotH)^(-1)](z) is true for all complex z. This is because the first function is Ln[(1 + z)/(1 - z)]/2 while the second is Ln[(z + 1)/(z - 1)]/2, in other words, with the negated input, but the catch is that these identities are only true when working with complex numbers.
@ThePeterDislikeShow3 жыл бұрын
Can you use imaginary numbers in your partial fraction?