Calculus 5.2c - Infinitesimals - Archimedes

  Рет қаралды 13,049

Derek Owens

Derek Owens

Күн бұрын

Пікірлер
@gpinon4346
@gpinon4346 7 жыл бұрын
Fantastic! Just fascinating...
@annaclarafenyo8185
@annaclarafenyo8185 3 жыл бұрын
Archimedes did not call this the method of exhaustion, the method of exhaustion is due to Eudoxus and it's equivalent to epsilon delta. Archimedes used infinitesimals in the method of mechanical theorems, by balancing things using the law of the lever, as explained on Wikipedia.
@yanntal954
@yanntal954 Жыл бұрын
Thank you for pointing this out!
@gabitheancient7664
@gabitheancient7664 Жыл бұрын
no no, he used levers to make intuition, in his "The Method" he explains that using mechanics is an amazing way of gaining some knowledge on mathematical objects before making any proof, but his proofs are basically bullet proof to this day, like his proof of the area of a circle
@annaclarafenyo8185
@annaclarafenyo8185 Жыл бұрын
@@gabitheancient7664 The major difference is that today we can make his lever proofs just as bulletproof as his rigorous constructions. It's a pity he didn't change mathematical practice to admit these arguments, although I am sure he would feel right at home in a modern calculus class.
@gabitheancient7664
@gabitheancient7664 Жыл бұрын
@@annaclarafenyo8185 can we? but I mean his lever arguments really do seem non-rigorous, I'm pretty sure you can't prove his center of mass and lever rules, I can't even think how you could make these ideas rigorous and usable to prove stuff I'm open to be proven wrong tho this seems interesting
@annaclarafenyo8185
@annaclarafenyo8185 Жыл бұрын
@@gabitheancient7664 His lever arguments are standard integral calculus. He is taking "dx" width slices of one shape and comparing them to "dx" width slices of another shape at distance x on the same lever. His argument amounts today to the definition of center of mass, and symmetry arguments for shapes with a symmetry around the center of mass, both of which we make rigorous by defining integrals. It takes effort to define integrals rigorously, Riemann and Lebesgue did it though.
@stabiljka
@stabiljka 9 жыл бұрын
Thank you. That's fascinating story.
@ThomasDeLello
@ThomasDeLello 2 жыл бұрын
It shouldn't be so hard to get one's head around the concept of a limit of a function yielding a transcendant constant, in this case the slope of a line. In Archamedes' example, a tiny arc.
@Vonzi0000
@Vonzi0000 13 жыл бұрын
Can't you just think of infinitesimals as being limits that approch zero (but never quite reach it)? And dy/dx being a quotient of such limits?
@Vonzi0000
@Vonzi0000 13 жыл бұрын
@derekowens Ok I'm looking forward to that. Good luck to your son at the game!
@namdevchintapalli
@namdevchintapalli 9 жыл бұрын
Wonderful
@samatarMohamed
@samatarMohamed 11 жыл бұрын
Shit imagine if mathemeticiams had this! Who knows how this could change our lives.
@goshiluvarchie
@goshiluvarchie 12 жыл бұрын
Lol, damn monks.
@Thewerwolf
@Thewerwolf 3 жыл бұрын
no one knows what archimedes look like
@jimkeller3868
@jimkeller3868 7 жыл бұрын
Leave it to the religion to destroy and obscure works of genius.
@derekowens
@derekowens 7 жыл бұрын
But remember that Newton himself was very devout. James Gleik's short biography on Newton is a very accessible and enjoyable work, highly recommended.
@annaclarafenyo8185
@annaclarafenyo8185 3 жыл бұрын
They also preserved the same works. Parchment was very expensive back then.
Calculus 5.2d - Infinitesimals - Newton to Robinson
13:42
Derek Owens
Рет қаралды 20 М.
Calculus 5.2b - The Notation
12:55
Derek Owens
Рет қаралды 36 М.
Support each other🤝
00:31
ISSEI / いっせい
Рет қаралды 81 МЛН
Арыстанның айқасы, Тәуіржанның шайқасы!
25:51
QosLike / ҚосЛайк / Косылайық
Рет қаралды 700 М.
The essence of calculus
17:05
3Blue1Brown
Рет қаралды 10 МЛН
Calculus -- The foundation of modern science
19:04
Physics Videos by Eugene Khutoryansky
Рет қаралды 921 М.
Calculus - The Fundamental Theorem, Part 1
10:20
Derek Owens
Рет қаралды 642 М.
Introduction to Calculus (1 of 2: Seeing the big picture)
12:11
Eddie Woo
Рет қаралды 2,9 МЛН
these are the only perfect squares
12:39
Michael Penn
Рет қаралды 2,1 М.
Calculus 1.1a - Early History and New Problems
9:20
Derek Owens
Рет қаралды 10 М.
Calculus 1.1c - Lengths, Areas, Volumes, and Rockets
7:08
Derek Owens
Рет қаралды 9 М.
Calculus - The Fundamental Theorem, Part 5
8:27
Derek Owens
Рет қаралды 83 М.
Terry vs Zhiyang 12/23/2024
8:25
Terry Table tennis 特瑞乒乓球
Рет қаралды 3
Support each other🤝
00:31
ISSEI / いっせい
Рет қаралды 81 МЛН