Can you Solve Mathematical Problem from Harvard University Entrance Exam ?

  Рет қаралды 4,917

Super Academy

Super Academy

Күн бұрын

Пікірлер: 36
@KyyTyy
@KyyTyy 3 күн бұрын
42=32+8+2 2¹+2³+2⁵ (2^p)=2¹ (2^q)=2³ (2^r)=2⁵ p=1, q=3,r=5
@oahuhawaii2141
@oahuhawaii2141 2 күн бұрын
There's no domain restriction on p, q, and r. 2^p + 2^q + 2^r = 42 , p < q < r Let p = 0 and q = 1 . 2⁰ + 2¹ + 2ʳ = 42 2ʳ = 39 r = log₂(39) One of an infinite number of solutions: p = 0 , q = 1 , r = log(39)/log(2) ≈ 5.2854022188622... Alternate solution: 42 = 2Ah = 101010b = 2¹ + 2³ + 2⁵ p = 1 , q = 3 , r = 5
@oahuhawaii2141
@oahuhawaii2141 2 күн бұрын
I like this best: p = e q = π r = log₂(42-2^e-2^π) ≈ 4.73303627...
@oahuhawaii2141
@oahuhawaii2141 2 күн бұрын
I like this solution best: p = e q = π r = log₂(42 - 2^e - 2^π) = log(42 - 2^e - 2^π)/log(2) ≈ 4.7330...
@karvindmishra09
@karvindmishra09 Күн бұрын
p=1, q=3, r=5
@michaeledwards2251
@michaeledwards2251 2 күн бұрын
A Douglas Adams "Hitch Hikers" guide to the Galaxy reference. The computer gives the answer "42" to the question "life, the universe, and everything". Given computers today use binary, the question assumes binary is still used, and asks the question, How would the computer represent 42 ?
@oahuhawaii2141
@oahuhawaii2141 2 күн бұрын
Some solid-state memory storage devices save data in di-bit form; each memory cell has 4 states. That's base 4, so 42 will be encoded as 222₄ . [My circuit used an MCU with internal EEPROM based on Fowler-Nordheim tunneling di-bit memory technology.] BTW, the story continues with the people designing an even more powerful computer to figure out what was the question that resulted in 42. The answer is "What is 6 times 9?" Note that: 6*9 = 54 = 42₁₃ . [I can see base 6 or 12 being used, but not base 13.]
@michaeledwards2251
@michaeledwards2251 2 күн бұрын
@@oahuhawaii2141 The minimum number of states to represent numbers occurs with base 3 : too awkward to work with. Both base 2 and 4 are equally efficient. Base 13 covers the "Bakers Dozen" as a unit digit : binary 1101 : base 3 as 111 : base 13 makes sense as a triple digit base 3 number.
@oahuhawaii2141
@oahuhawaii2141 Күн бұрын
@@michaeledwards2251: A Bakers Dozen is 13, which is 10 in base 13. Not a unit digit. Numbers 0 to 12 can be encoded with 0 to 9, A-C .
@에스피-z2g
@에스피-z2g 3 күн бұрын
Solution by insight 2^p+2^q+2^r=42 Among 2,4,8,16,32 2+8+32=42 The only possible combination. p=1, q=3,r=5
@superacademy247
@superacademy247 3 күн бұрын
Thanks for sharing your insight 💯💕✅💪
@oahuhawaii2141
@oahuhawaii2141 2 күн бұрын
Untrue. The requirement is p < q < r , but they can be real numbers. Here are 4 of an infinite number of valid solutions: p = 0 , q = 1 , r = log₂(39) = log(39)/log(2) ≈ 5.2854022188622... p = 2 , q = 4 , r = log₂(22) = log(22)/log(2) ≈ 4.4594316186372... p = 0 , r = 5 , q = log₂(9) = log(9)/log(2) ≈ 3.1699250014423... p = e , q = π , r = log₂(42-2^e-2^π) = log(42--2^e-2^π)/log(2) ≈ 4.7330362716713...
@oahuhawaii2141
@oahuhawaii2141 2 күн бұрын
Untrue. The requirement is p < q < r , but they can be real numbers. Here are 4 of an infinite number of valid solutions: p = 0 , q = 1 , r = log₂(39) = log(39)/log(2) ≈ 5.2854022188622... p = 2 , q = 4 , r = log₂(22) = log(22)/log(2) ≈ 4.4594316186372... p = 0 , r = 5 , q = log₂(9) = log(9)/log(2) ≈ 3.1699250014423... p = e , q = π , r = log₂(42-2^e-2^π) = log(42--2^e-2^π)/log(2) ≈ 4.7330362716713...
@oahuhawaii2141
@oahuhawaii2141 2 күн бұрын
Untrue. The requirement is p < q < r , but they can be real numbers. Here are 4 of an infinite number of valid solutions: p = 0 , q = 1 , r = log₂(39) = log(39)/log(2) ≈ 5.2854022188622... p = 2 , q = 4 , r = log₂(22) = log(22)/log(2) ≈ 4.4594316186372... p = 0 , r = 5 , q = log₂(9) = log(9)/log(2) ≈ 3.1699250014423... p = e , q = π , r = log₂(42-2^e-2^π) = log(42--2^e-2^π)/log(2) ≈ 4.7330362716713...
@oahuhawaii2141
@oahuhawaii2141 2 күн бұрын
Untrue. The requirement is p < q < r , but they can be real numbers. Here are 4 of an infinite number of valid solutions: p = 0 , q = 1 , r = log₂(39) = log(39)/log(2) ≈ 5.2854022... p = 2 , q = 4 , r = log₂(22) = log(22)/log(2) ≈ 4.4594316... p = 0 , r = 5 , q = log₂(9) = log(9)/log(2) ≈ 3.1699250... p = e , q = π , r = log₂(42-2^e-2^π) = log(42--2^e-2^π)/log(2) ≈ 4.733036...
@sidharthsehrawat6423
@sidharthsehrawat6423 3 сағат бұрын
1 3 5
@key_board_x
@key_board_x 2 күн бұрын
2^(p) + 2^(q) + 2^(r) = 42 2^(p) + 2^(q + p - p) + 2^(r + p - p) = 42 2^(p) + 2^(p + q - p) + 2^(p + r - p) = 42 2^(p) + [2^(p) * 2^(q - p)] + [2^(p) * 2^(r - p)] = 42 2^(p).[1 + 2^(q - p) + 2^(r - p)] = 42 ← there is an odd number in the second bracket 2^(p).[1 + 2^(q - p) + 2^(r - p)] = 2 * 21 2^(p).[1 + 2^(q - p) + 2^(r - p)] = 2^(1) * 21 → you can deduce that: 2^(p) = 2^(1) → p = 1 [1 + 2^(q - p) + 2^(r - p)] = 21 2^(q - p) + 2^(r - p) = 20 → recall: p = 1 2^(q - 1) + 2^(r - 1) = 20 [2^(q) * 2^(- 1)] + [2^(r) * 2^(- 1)] = 20 → recall: x^(- a) = 1/x^(a) → then: 2^(- 1) = 1/2^(1) = 1/2 [2^(q) * 1/2] + [2^(r) * 1/2] = 20 (1/2).[2^(q) + 2^(r)] = 20 2^(q) + 2^(r) = 40 2^(q) + 2^(r + q - q) = 40 2^(q) + 2^(q + r - q) = 40 2^(q) + [2^(q) * 2^(r - q)] = 40 2^(q).[1 + 2^(r - q)] = 40 ← there is an odd number in the second bracket 2^(q).[1 + 2^(r - q)] = 8 * 5 2^(q).[1 + 2^(r - q)] = 2^(3) * 5 → you can deduce that: 2^(q) = 2^(3) → q = 3 [1 + 2^(r - q)] = 5 2^(r - q) = 4 2^(r - q) = 2^(2) r - q = 2 r = 2 + q → recall: q = 3 → r = 5 Summarize p = 1 q = 3 r = 5
@superacademy247
@superacademy247 2 күн бұрын
Awesome 💯😎👍
@kareolaussen819
@kareolaussen819 3 күн бұрын
This is a question of finding the binary representation of 42. Take r>q>p and define r to be the largest number for which 2^r ≤ 42. Subtract and repeat the procedure for the remainder (here 10) until the remainder is zero. Here we find 42 = 32 + 8 + 2 = 2^5 + 2^3 + 2^1. I.e, r, q, p = 5, 3, 1.
@oahuhawaii2141
@oahuhawaii2141 2 күн бұрын
No other permutation because of the relational condition.
@kareolaussen819
@kareolaussen819 2 күн бұрын
@@oahuhawaii2141 You a right! I wrote the first version of my comment before I read that condition, and forgot to change the last part of my comment.
@oahuhawaii2141
@oahuhawaii2141 Күн бұрын
@@kareolaussen819: The only restriction is p < q < r , so I chose real numbers. I like this solution best: p = e q = π r = log₂(42 - 2^e - 2^π) = log(42 - 2^e - 2^π)/log(2) ≈ 4.7330...
@TheNizzer
@TheNizzer 2 күн бұрын
32,16,8,4,2,1,… (0 removed) Which 3 sum to 42? 32,8,2 P=1, q=3, r=5. This is supposed to be difficult? Given non integer powers of 2 are irrational….
@oahuhawaii2141
@oahuhawaii2141 2 күн бұрын
Untrue, as 2 raised to a negative integer is a fraction, which isn't irrational. Example: 2⁻⁵ = 1/32 = 0.03125 .
@TheNizzer
@TheNizzer 2 күн бұрын
@ and three negative powers add up to more than 1? They aren’t under consideration, for obvious reasons.
@oahuhawaii2141
@oahuhawaii2141 Күн бұрын
​@@TheNizzer: You wrote "non integer powers of 2 are irrational". My example shows your statement is incorrect. BTW, in your list of numbers, each corresponds to powers of 2, with exponents from 5 down to 0, except the last entry, where you have 2ⁿ = 0 . No such n exists.
@TheNizzer
@TheNizzer Күн бұрын
@@oahuhawaii2141 Are you claiming -1, -2 … are non integer? Or that eg 2^0.5 is rational? Or eg 2^-0.5 is in some way rational? Can you advise a non integer power that is rational as a counter example?
@oahuhawaii2141
@oahuhawaii2141 Күн бұрын
@@TheNizzer: It's possible to get an integer result by raising 2 to an irrational number: 2^(log(3)/log(2)) = 3 .
@saltydog584
@saltydog584 3 күн бұрын
Just write it as a binary number. 32=10101 then convert back to base 10. 10101=32 + 8 + 2 = 2^5 + 2^3+2^1so P is 5, Q is 3 and r =1 (only works when P,Q&R are whole numbers)
@pijusuaac.chattopadhakjm2676
@pijusuaac.chattopadhakjm2676 2 күн бұрын
How is 32(base 10)=10101(base 2)?
@oahuhawaii2141
@oahuhawaii2141 2 күн бұрын
@pijusuaac.chattopadhakjm2676: OP is very sloppy. I would show the conversion as: 42 = 2Ah = 101010b = 2⁵ + 2³ + 2¹
@saltydog584
@saltydog584 Күн бұрын
@@pijusuaac.chattopadhakjm2676 Thanks, I've corrected my typo.
Can you Pass Stanford University Admission Simplification Problem ?
20:02
Cambridge University Admission Exam tricks
14:58
Super Academy
Рет қаралды 5 М.
When u fight over the armrest
00:41
Adam W
Рет қаралды 31 МЛН
小路飞还不知道他把路飞给擦没有了 #路飞#海贼王
00:32
路飞与唐舞桐
Рет қаралды 88 МЛН
Can you Pass Harvard University Admission Exam with Ease ?
15:23
Super Academy
Рет қаралды 3,6 М.
Oxford University Entrance Exam Tricks
12:49
Super Academy
Рет қаралды 1,2 М.
Which number is larger? - Math puzzle
11:17
Math Queen
Рет қаралды 30 М.
The Algebra Step that EVERYONE Gets WRONG!
17:54
TabletClass Math
Рет қаралды 260 М.
High School Math tournament | Find the Value of x=?
9:27
Super Academy
Рет қаралды 202
Can you Pass Stanford University Admission Simplification Problem ?
9:13
A tricky problem from Harvard University Interview
18:11
Higher Mathematics
Рет қаралды 251 М.
When u fight over the armrest
00:41
Adam W
Рет қаралды 31 МЛН