Contour integration with anti-derivatives. Three examples
Пікірлер: 13
@leahstella7856 жыл бұрын
So happy that this video series has been posted, the teaching in my university is substandard at best, so you have saved me!
@etlekmek5 жыл бұрын
kesin öyledir he he
@GoogleUser-ee8ro5 ай бұрын
these videos come in handy because i am learning CIF and residual theorem right now
@Marawan Жыл бұрын
6:05 Did he say inshallah?
@manueljenkin953 жыл бұрын
Thank you very much sir!
@macmos19 жыл бұрын
in this case, the interval of principle argument is from -pi/2 to pi/2?
@11126344 жыл бұрын
Why we didn't use 7pi/4 as the argument of 2-2i in the last example?
@mostafaesalamony68368 жыл бұрын
how did he find the arguments in the last example?
@Mattdbr6 жыл бұрын
Just by inspection - you know 1 + i is in the first quadrant with an argument of pi/4, 2 + 2i has the same argument and so is pi/4. I mean you could just do inverse tan(1/1) otherwise.
@jamesbyrd4053 жыл бұрын
Thank you
@Mojito999 жыл бұрын
I thought Log(z^2 + 2) is not analytic if z^2 + 2 is non positive and real why are we then talking about the imaginary axis ?
@perchanceyes47869 жыл бұрын
+Nick R Because z^2 + 2 = x^2 + 2ixy - y^2 +2 which is only non-positive and real when x=0 and y>=sqrt(2) and that lies on the imaginary axis.
@AnkitVishway7 жыл бұрын
Just a rearrangement of words +Nick R Because z^2 + 2 = x^2 + 2ixy - y^2 +2 which is non-positive and real only when x=0 and y>=sqrt(2) and that lies on the imaginary axis.