Great video, and the trick at the end, transforming cartesian to polar coordinates to have one less variable to worry about and approach (0,0) “from all directions”, is really cool!
@m.varunreddy73652 жыл бұрын
Beautiful video, loved the visuals(graphs,3d), they help me understand faster... thank you suur!
@reijo60792 жыл бұрын
Thank you so much, this really made helped understand how to solve basically any kind of problem like this and also how to make functions continuous in certain points!
@MiguelSantos-lu8uj2 жыл бұрын
Great video! Very underated channel with amazing quality. Love from Portugal
@mathemation2 жыл бұрын
Thank you, Miguel! So glad you have been enjoying this content :)
@danieljulian4676 Жыл бұрын
Nice presentation. First commendation is the figure at the beginning that shows a discontinuity in a surface over the domain R^2, which really brings home the bivalent situation at the discontinuity. You cover the topic (which is a standard one) and include all the usual points, including the transformation to polar coordinates. When you mention applying L'Hôpital's rule, valid on domain R, the series expansion of the function is (at least) implied, and this is also valid in domains beyond R. With the function you chose, the linear term is sufficient to show the limit exists, unless I'm forgetting something important.
@NibrasKoo Жыл бұрын
Very helpful video with a very good explanation thank you so much
@Stefabro2 жыл бұрын
you're really good at explaining, thank you for all your help!
@MrCEO-jw1vm5 ай бұрын
really good explanation! thanks
@lav69782 жыл бұрын
Arigato gozaimuch for the wonderful explanations
@abdelrahmanabdelrahman81492 жыл бұрын
you are so good
@satarnaghizadeh662311 ай бұрын
Awesome ❤
@mwilamwamba1787 Жыл бұрын
Thank you🎉
@matrixtrace2 жыл бұрын
Last example: would it be legal to make a substitution z=x^2+y^2, without transforming to polar coordinates?
@mathemation2 жыл бұрын
Yes, that's fine. This works because (x,y)->(0,0) if and only if x^2+y^2 -> 0. Effectively, this is the same as transforming to polar coordinates.
@dzdeparsio46762 жыл бұрын
Thank you so much
@isaacmarcelino_ Жыл бұрын
How do we know the best paths to take?
@عشإيجابيا3 ай бұрын
same qst
@ijustwanttoseealiadabbing2270 Жыл бұрын
love you
@rogersowden23693 жыл бұрын
Hey i checked your video before this but I couldn't see anything about x^2 + y^2 = p^2? where do I find these cartesian to polar conversions?
@mathemation3 жыл бұрын
The conversion between Cartesian and polar coordinates are discussed here: kzbin.info/www/bejne/lX67hZeVj7p-fMk
@rogersowden23693 жыл бұрын
@@mathemation Thanks for the quick reply! You're awesome! Subbed