Deep Learning 34: (1) Wasserstein Generative Adversarial Network (WGAN): Introduction

  Рет қаралды 25,283

Ahlad Kumar

Ahlad Kumar

Күн бұрын

Пікірлер: 34
@QueenMate
@QueenMate 5 жыл бұрын
This was an amazing mathematical intuition, eagerly waiting for further videos.
@ahteshamabbasi9503
@ahteshamabbasi9503 4 жыл бұрын
One of the best mathematical explanation out there.
@ankitsingh-xl7bo
@ankitsingh-xl7bo 8 сағат бұрын
JSD in GAN is only used for the optimal discriminator and not for all the cases... isn't it?
@MLDawn
@MLDawn 5 жыл бұрын
I am a huge fan! First time EVER that I have seen a lecture like this!
@AhladKumar
@AhladKumar 5 жыл бұрын
thanks
@rayll8579
@rayll8579 4 жыл бұрын
The video deserves more visibility
@sangameshkodge1664
@sangameshkodge1664 5 жыл бұрын
While discussing the KL divergence(5:17) P was unknown and Q was a known distribution. But in the discussion for forward KL(12:16) I see that Q distribution is said to vary (How can Q stretch if Q is already known, shouldn't it be fixed?). Is Q assumed to be unknown and P assumed to be known in the case for forward KL ?
@pramethgaddale8242
@pramethgaddale8242 4 жыл бұрын
P is the distribution of the data provided, which is unknown. Q is an approximation to the posterior which is chosen for our convenience. Q is chosen mostly to be gaussian, but if we know the data generating process, we can use different priors too(such as beta or dirichlet, many use Gaussian because it's easy to work with). Coming to Q being to vary, this posterior approximation, forming the ELBO, turns the inference problem to an optimisation. Using SGD, you start with some random mean and variance and work your way to get the best possible ones.
@darkmythos4457
@darkmythos4457 5 жыл бұрын
Sir, thank you very much for taking the time to make such a greate lectures.
@marinamaher8211
@marinamaher8211 2 ай бұрын
Magnificent!
@vaishanavshukla5199
@vaishanavshukla5199 3 жыл бұрын
wonderful explaination as always
@AbhishekSen
@AbhishekSen 5 жыл бұрын
Machaya bhai, sab samajh aa gya!!
@sudarshanregmi14
@sudarshanregmi14 4 жыл бұрын
Thank you so much. Please, keep making such great videos.
@iliasaarab7922
@iliasaarab7922 4 жыл бұрын
Amazing explanation! Thank you sir! 🙌🏽
@delseyjohnson3960
@delseyjohnson3960 2 жыл бұрын
how to get the complete course content
@asheerali2376
@asheerali2376 9 ай бұрын
perfect explaination
@newtonleibniz879
@newtonleibniz879 25 күн бұрын
Can notes pdf be provided
@kristianmamforte4129
@kristianmamforte4129 10 ай бұрын
amazing lecture!
@manikantabandla3923
@manikantabandla3923 Жыл бұрын
It could have been more informative if you can point out the relevant papers of lectures.
@chocclolita
@chocclolita 4 жыл бұрын
Thank you so much!
@appletree6741
@appletree6741 3 жыл бұрын
excellent!
@ayushthada9544
@ayushthada9544 5 жыл бұрын
Sir, this is great video. Not just the explanation was clear but I really like your teaching style too. Could you make a video on StackGANs and Full Bayesian Implementation of GAN too? That would be a big help sir.
@AhladKumar
@AhladKumar 5 жыл бұрын
sure
@ayushthada9544
@ayushthada9544 5 жыл бұрын
@@AhladKumar Thank you so much, sir.
@ayushthada9544
@ayushthada9544 5 жыл бұрын
@@AhladKumar Thank you so much, sir.
@spencert94
@spencert94 4 жыл бұрын
If JS Divergence is the only/main reason GANs preform better than VAEs why would you not just use JS Divergence in VAEs. It seems like JS Divergence is just a more stable and symmetrical KL Divergence which doesn't seem like it would actually lead to better results in most cases just be more stable.
@krishanudasbaksi9530
@krishanudasbaksi9530 4 жыл бұрын
maybe coz JS divergence is not differentiable.
@mostafakattan6971
@mostafakattan6971 5 жыл бұрын
This is great job, but can you put subtitle on all your videos.
@vijetakhare8331
@vijetakhare8331 5 жыл бұрын
Superb👌🏼👌🏼
@satyamdubey4110
@satyamdubey4110 8 ай бұрын
💖💖
@angquoctien4640
@angquoctien4640 4 жыл бұрын
it would be clearer with subtitle below
@mimo-wx9mc
@mimo-wx9mc 4 жыл бұрын
hello sir, I don't understand your English can you add the subtitle that will help me a lot thank you
@anubhavgupta4917
@anubhavgupta4917 3 жыл бұрын
Uncut Diamond, Uncut Diamond, Uncut Diamond, Uncut Diamond, Uncut Diamond, Uncut Diamond, Uncut Diamond, Uncut Diamond
@NancyLee-s5j
@NancyLee-s5j 2 ай бұрын
Emmanuelle Loop
Motorbike Smashes Into Porsche! 😱
00:15
Caters Clips
Рет қаралды 23 МЛН
Trick-or-Treating in a Rush. Part 2
00:37
Daniel LaBelle
Рет қаралды 44 МЛН
Introduction to the Wasserstein distance
17:28
Applied Algebraic Topology Network
Рет қаралды 30 М.
A Friendly Introduction to Generative Adversarial Networks (GANs)
21:01
Serrano.Academy
Рет қаралды 258 М.
Naval Ravikant - How to Get Ahead of 99% of People (Starting in 2024)
11:21
247 - Conditional GANs and their applications
39:51
DigitalSreeni
Рет қаралды 46 М.
How Hollywood Shot Actors with Arrows before CGI
15:12
Tyler Bell
Рет қаралды 3,7 МЛН
The Math Behind Generative Adversarial Networks Clearly Explained!
17:04
Motorbike Smashes Into Porsche! 😱
00:15
Caters Clips
Рет қаралды 23 МЛН