Deep learning et fractales | Intelligence artificielle 50

  Рет қаралды 27,300

Science4All

Science4All

Күн бұрын

Пікірлер: 90
@TheNostradE3
@TheNostradE3 6 жыл бұрын
Je suis actuellement étudiant en data science et même si ces vidéos sont de la vilgarisation, celles-ci restent merveillesement efficace dans la compréhension des notions et le dévelopement d'une bonne intuition ! Merci pour ce contenu fabuleux.
@athanase6613
@athanase6613 5 жыл бұрын
Je viens d'en regarder toute une floppée (de vidéo) et je les ai toutes trouvées très intéressantes, et très bien expliquées ou documentées. Cela me rajeuni énormément. En tout cas, vous faites un superbe travail.
@Khwartz
@Khwartz 6 жыл бұрын
Cher Lê, je ne peux pas dire que dernièrement j'ai fait beaucoup de Dithyrambes pour des vidéos de Science et d'Expérimentations diverses. Cela dit, je ne peux que l'être Une Fois De Plus, pour ce qui te concerne ! En effet, c'est Si Rafraîchissant pour moi de trouver à la fois Autant de RIGUEUR, CLARTÉ, D'HONNÊTETÉ et d'HUMILITÉ sur de tels sujets ! :) :) :) :) Je suis VRAIMENT Très Très Heureux que Tu sois parmi nous à Faire ce que Tu fais, et à le Faire Comme Tu le Fait ! J'aimerais juste avoir plus de temps pour ne pas manquer autant de tes vidéos et remercie Mon Fils de m'avoir recommandé le visionnage de celle-ci :) Plein De Très Bonnes choses À Toi, même si je suis déjà convaincu que Tu dois en avoir déjà En Abondance ! ^_^ Très Sincèrement, Didier.
@igpn4205
@igpn4205 6 жыл бұрын
Tes vidéos sont toujours aussi passionnées et passionnantes, je crois que tu m'as donné envie de me lancer a faire des études scientifiques.. Et celles en duo avec mr phi, aya c'est pareil un délire! Bref merci à toi ;)
@asdref5941
@asdref5941 6 жыл бұрын
J'adore le coup de la fractale pour séparer les concepts. En le voyant comme ça on peut facilement voir pourquoi il est si difficile de créer des définitions, en verbalisant on essaierait d'approcher une fractale (le mot à définir) en utilisant d'autres fractales (les mots qu'on utilise), et ça marche aussi dans l'autre sens, quand on a un "truc" qui ressemble à un chat, on n'arrive pas trop à savoir si c'est un chat ou non, si on refais ça avec des fractales on voit bien que pour un point très proche de la frontière c'est compliqué de dire si il est dedans ou non. *mind=blow*
@hl0375
@hl0375 6 жыл бұрын
Super intéressante cette théorie ! Ça permet peut-être d'expliquer la difficulté de trouver la frontière entre ce qu'on peut dire "c'est un chat" et "ce n'est pas un chat". ...Ça pourrait aussi peut-être expliquer comment la modification d'un pixel puisse suffire à tromper un réseau ? Avec une "fractalité" (qui me fait penser à une généralisation de la notion de dimensionnalité d'ailleurs) élevée, j'imagine qu'il n'est pas aberrant de sortir et re-rentrer dans l'hyper-volume classifié comme "chat" en jouant sur une seule dimension. Ça m'amène aussi à une autre réflexion : La sur-interprétation, on peut la voir comme ajuster la frontière de l'hyper volume des solution (de la question "est-ce un chat" par exemple) de manière trop complexe et empêchant donc de généraliser. Mais à supposer que cet ensemble soit réellement fractal, soit naturellement (possible, vu que les fractales semblent jouer un rôle très important dans la nature), soit artificiellement (après tout, notre cerveau est assez proche d'un réseau de neurone artificiel profond), ce serait normal que cette frontière soit complexe. Du coup, pour un réseau large, c'est logique qui faille un très grand nombre de données d'entrainement pour identifier ce qui est du bruit et ce qui ne l'est pas. Mais avec un réseau profond, qui permettrait alors de générer "automatiquement" des fractale ou pseudo-fractales du même genre, on pourrait imaginer qu'ils n'ont pas besoin d'un trop grand nombre de donnée d'entrainement (par rapport à leur dimension VC), vu que justement, la forme de la fonction serait d'une manière contrainte (autosimilarité par exemple, même si c'est un cas particulier des fractales) ? (Même s'il en faut suffisamment pour éliminer le bruit)
@theopantamis9184
@theopantamis9184 6 жыл бұрын
Ravi que mon commentaire t'aies inspiré. C est sur que d expliquer tout ca a un public non averti aussi concis c est assez acrobatique donc bien joué pour avoir reussi a raconter l essentiel ^^ Pas grave pour le nom vu que tu as rectifié haha ;) Bonne continuation !
@droledequestionneur4550
@droledequestionneur4550 6 жыл бұрын
Incroyable! Les fractales faisaient parties de nous depuis le début! Enfin des t-shirt intéressants! J'adore la formule de Bayes mais aussi "Tous les modèles sont faux, certains sont utiles" ;) Maintenant, après ces partages de vidéo à la fin, je suis d'autant plus impatient, de découvrir de nouvelles vidéos de Micmaths et El jj, ton indécente fréquence de publication déteint sur la celle des autres, trop de contraste entre les différents rythmes ^^ Mais continue comme ça ;)
@sourivore
@sourivore 6 жыл бұрын
Je suis ta chaîne depuis quasiment ses débuts. J'ai moi même investi mes rentes pécuniaires, long travail d'amoncellement de richesse provenant de la vente de lacets de chaussures comestibles en participant au Tipee et autres dons Twitch (chaîne sur laquelle, tu n'oseras jamais le révéler, tu es devenu incontournable dans le jeu si prisé de "Léa, passion mathématiques") Toutefois je regarde cette vidéo, juste après un dîner composé en majeure partie de topinambour et de viande de mulot et je constante, à mon plus grand effroi, que tout cet argent que je t'ai donné à été dépensé sans vergogne dans une feuille de papier. Et pourtant tout le monde sait la valeur que peut avoir cet objet. Et POURTANT tu la plies sans ménagement comme si c'était un vulgaire déchet. J'aimerais à l'avenir, sous peine de le rapporter à M.Le Président de la République, que tu me concertes (uniquement moi car tout le monde sait l'intérêt qu'à la parole de la plèbe) avant de dépenser autant d'argent. En outre, pour te racheter j'aimerais que tu fasses don de cette feuille à une ONG qui saura en faire quelque chose de constructif comme une console de jeu pour les pays en voie de développement. Représentant la voix du peuple qui parle fort, je te souhaite un bon retour sur ton action, monstre.
@TheCatbutcher
@TheCatbutcher 6 жыл бұрын
Malgré 6 années d'études en maths, plus je regarde tes vidéos moins j'ai l'impression de les comprendre :D malgré tout je salue encore une fois ton travail car tu arrive quand même à les démystifier un peu (selon moi)
@sebydocky5080
@sebydocky5080 6 жыл бұрын
Tip Top .... pour l'instant la meilleure sur ta série sur le Deep ....
@Razaim01
@Razaim01 6 жыл бұрын
Ta timidité naturelle (que tu combats avec brio) te donne un côté extrêmement touchant quand tu te lâches en faisant des blagues, et ça rend efficace l'humour alors même que cela ne semble pas être ni ta spécialité, ni ton point fort. Bref, quand tu te lâches un peu, sans en faire trop, j'adhère. Le ton était bon et tout cela ne fait qu'orner une vidéo déjà hyper intéressante. J'aime aussi le fait que tu ne souffres pas du dictat de l'hyper vulgarisation, en effet, c'est pas grave si parfois il y a du charabia qu'on comprend pas tous, et j'imagine que ça permet aux experts d'apprécier ton travail à un autre niveau, et ils le méritent à mon sens.
@mathiasautexier
@mathiasautexier 6 жыл бұрын
waouh !!! la vision fractal du réseau neuronal profond ... c est bien là une approche mathématique du monde ! une répétition à l'infini d une structure simple pour approcher la réalité complexe du monde, c est un peut la méthode scientifique non ? celle qui fonde l'esprit même de la science, mais surtout des mathématique ? excellent !!!!
@lgcalx5656
@lgcalx5656 4 жыл бұрын
Cette dualité des GAN semble d'ailleurs constitutive de la notion de sélection naturelle: un générateur produisant en grande quantité (la plus variée possible) et un discriminateur ou 'fonction récompense'. De même, comme tu disais sur la conscience, à chaque instant t, et sur la base d'une mise en cohérence des instants passés, la conscience peut extrapoler, générer des flux de causalités - ou scenarii - divers et en entrevoir les conséquences finales - son caractère générateur. Et ensuite un caractère discriminateur est nécessaire pour décider de l'action (il se fait suivant le système de valeurs de l'individu, selon ce qu'il veut voir incarné ou non dans son futur)
@TKZprod
@TKZprod 6 жыл бұрын
14:58 le problème de la plupart des métriques utilisée pour entraîner des GANs est qu'elles ne calculent que la RESSEMBLANCE entre les données réelles et générées. Sauf que lorsque l'on entraine un modèle génératif on ne veux pas qu'il fasse du plagiat ! Si le modèle overfit et génère des exemples de l'ensemble d'entraînement alors il fera des super scores de ressemblance. Il faut donc mettre au point des métriques qui calculent également l'ORIGINALITÉ des samples, c'est-à-dire vérifier qu'il ne volent pas d'informations à des exemples réels. En gros, on veux générer un nouveau visage d'un humain qui n'existe pas, pas une photo de Brad Pitt ! C'est un problème que l'on aborde notamment lorsque l'on utilise les GANs pour avoir des données synthétiques pour garantir la confidentialité des données réelles, mon sujet de recherche ;) Et on a de bonnes pistes pour ces métriques d'originalité ! A+
@jat9292
@jat9292 6 жыл бұрын
Il y a aussi pas mal d'études actuellement qui essaient d'expliquer l'efficacité du DL et en particulier des CNN et LSTM via une analyse topologique adaptée aux ensembles discrets. Intuitivement on peut représenter les datasets comme des graphes avec une ou plusieurs composantes connexes et calculer leur diagramme d'homologie persistante. Cette approche permet de comprendre l'efficacité pratique des CNN et LSTM (qui en théorie n'apportent rien de plus en terme d'expressivité que les feed forward) www.ayasdi.com/blog/artificial-intelligence/going-deeper-understanding-convolutional-neural-networks-learn-using-tda/ et même de proposer de nouvelles architectures avec de meilleurs biais inductifs www.ayasdi.com/blog/topology/geometric-methods-constructing-efficient-neural-net-architectures/ . L'analyse topologique des données a permet aussi d'atteindre de bonnes performances en réduction de dimension grâce à l'algorithme UMAP plus efficace que TSNE (plus sensible aux outliers et plus rapide) umap-learn.readthedocs.io/en/latest/. C'est aussi l'idée qu'il y a derrière les graph neural networks qui généralisent mieux que les CNN pour des données structurées dans des espaces non euclidien, certains réseaux en graphe sont mêmes capables de résoudre des problèmes SAT openreview.net/pdf?id=HJMC_iA5tm et sont aussi utiles pour de l'inférence causale et une meilleure généralisation en renforcement arxiv.org/pdf/1806.01830.pdf .
@hl0375
@hl0375 6 жыл бұрын
Super intéressant !
@TKZprod
@TKZprod 6 жыл бұрын
A 3:05 c'est le nombre de sous-espaces supplémentaires AU PLUS (au maximum). On peut imaginer des plis qui coupent moins de régions (par exemple des plis parallèles).
@ChesterKea
@ChesterKea 6 жыл бұрын
Ahah c est génial ! Merci de toujours repousser mon champ de pensée ^^
@ChesterKea
@ChesterKea 6 жыл бұрын
Par contre cette histoire de calcul de quasi fractalités ça me laisse dubitatif.. je pense plutôt qu'on parle de minimisation de la taille du model et des données encodées dans le model mais bon sthune autre histoire !
@Patapom3
@Patapom3 6 жыл бұрын
Excellent ! C'est marrant parce que je fais un peu de spéculation sur un algo d'analyse sémantique pour du NLP et je suis arrivé à cette même conclusion pas plus tard que la semaine dernière : il y a une structure fractale sous-jacente dans l'expression d'une information ! ^_^ (serais-je sur la bonne voie ?)
@MrRedark98
@MrRedark98 6 жыл бұрын
Super bien expliqué !
@leroimerl1
@leroimerl1 6 жыл бұрын
T'a des épisodes tu peux les regarder 10 fois ta toujours pigé que 2 trucs 😂
@krysten75
@krysten75 6 жыл бұрын
Moi j'ai bien compris la partie sur les casquettes ! 😅
@Serird
@Serird 6 жыл бұрын
Faut que tu la regarde à l'envers, ou en *2, parce que si tu regardes tout le temps la même chose, tu vas faire du sur-apprentissage.
@gaeldauchy5491
@gaeldauchy5491 6 жыл бұрын
J'ai tout vu, j'ai regardé toutes les vidéos de la chaîne, je suis plutôt bon en Maths pour un 1S, et bien je n'ai compris que les trucs simples... 😱
@thomasmonti6972
@thomasmonti6972 2 жыл бұрын
merci pour tes lecons geniale
@AllXS7117
@AllXS7117 6 жыл бұрын
qu'en est-il de la généralisation de ces frontières de décisions quasi fractales à des données de test ? comment juger de la complexité dans ce cas ?
@sylvainleseur1072
@sylvainleseur1072 2 жыл бұрын
Super, merci.
@gillesmordant6116
@gillesmordant6116 5 жыл бұрын
Au risque de dire une bêtise, il me semble que ce n'est pas si étonnant que cela. En effet, dans le cas d'une classification binaire, le résultat (output du réseau) sera une quantité sur [0,1] (juste avant la phase de seuillage). Le réseau de neurones est donc une application d'un espace (R^d, par exemple) vers [0,1]. On sait que de tels objets existent (space-filling curves, par exemple), que si l'on veut ajouter un caractère probabiliste à la question, ce n'est pas si dérangeant car un espace mesuré est isomorphe à [0,1] que l'on munit de la mesure de Lebesgue. Enfin, on sait aussi qu'il est impossible que cette application soit un homéomorphisme. Le charactère fractal semble s'imposer...
@EmmanuelRegenwetter
@EmmanuelRegenwetter 6 жыл бұрын
Merci. J'ai partagé. Direct!
@theoi3921
@theoi3921 6 жыл бұрын
Encore une chouette vidéo qu'on dévore avec délice! Ca a l'air super interessant toutes ces théories mais concrêtement est-ce qu'on a fait des simulations pour voir leur applications sur le "terrain" ou est-ce que c'est toujours des calculs sur un tableau?
@Yarflam
@Yarflam 6 жыл бұрын
Bien entendu. La plupart du temps on affiche des graphes pour obtenir une représentation, par exemple des taux d'apprentissages, marges d'erreurs ou ensemble d'entraînements (comme sur cette application en ligne : playground.tensorflow.org/ ). Si on utilise du Deep Learning, on peut obtenir l'état des couches (une image qui représentera par exemple le contour d'une forme). Puis si on veut aller plus loin, "sur le terrain", on peut également les appliquer sur des mini-robots virtuels pour voir leur comportement - cette solution ne peut pas être systématiquement utilisé. Si c'est un simple ajustement, on peut se contenter de la sortie du terminal (des suites de nombres) - de mon côté j'affectionne particulièrement ce type de représentation pour des réseaux de neurones simples : NETWORK S0 LAYER S0L0 NEURON S0L0N0 [v: 1, b: -0.4158290392756858, a: 0] [OUT] -> S0L1N0 [w: -0.5547204615846146] [OUT] -> S0L1N1 [w: -0.27324743028988907] [OUT] -> S0L1N2 [w: -0.03697601872535117] NEURON S0L0N1 [v: 113, b: 0.9189209769269038, a: 0] [OUT] -> S0L1N0 [w: -0.02269754392854484] [OUT] -> S0L1N1 [w: -0.3018957160584872] [OUT] -> S0L1N2 [w: -0.31617129913578923] NEURON S0L0N2 [v: 2.1582708045145864, b: -0.7680014166300762, a: 0] [OUT] -> S0L1N0 [w: 0.5286809789360909] [OUT] -> S0L1N1 [w: -0.66846590847382] [OUT] -> S0L1N2 [w: -0.5392365599961044] LAYER S0L1 NEURON S0L1N0 [v: 0.04973220983388131, b: -0.9715848171129835, a: 0] [IN]
@cyril3651
@cyril3651 6 жыл бұрын
à 3:45 la formule pour le nombre de region créée est fausse si au moins trois doites s'intersectent en un point. Ce resultat doit être vrai presque surement.
@alexandraMathematica
@alexandraMathematica 6 жыл бұрын
Quelqu'un peut me dire où trouver le texte entier de 6.53, je ne vois pas ce que peut etre k(teta)² et l'espace E en exposant de la dernière formule ? merci :)
@le_science4all
@le_science4all 6 жыл бұрын
K(theta) est la courbure de Gauss. Les liens sont en description (c'est le papier "exponential expressivity (...) transient chaos")
@frenchbrony
@frenchbrony 6 жыл бұрын
En fait, cela expliquerai pourquoi les concepts qu'on manipule aisément (comme celui de "chat") sont si compliqués à définir. Les exemples limites des concepts nous semblent toujours flous et difficiles à englober dans des définition simples. Cela se concrétise mathématiquement par des bordures en fractales !
@frenchbrony
@frenchbrony 6 жыл бұрын
En fait, l'intelligence telle qu'on se la représente, ce serait la capacité à inférer, à partir de données, des distributions de probabilité fractales dans des espaces de grande dimension...
@ominium8386
@ominium8386 6 жыл бұрын
Je crois qu'il y avait un scientifique français qui avait pondu la théorie de la fractalité de l'univers. Si chaque concept est représenté par une fractale, c'est un objet, il a une influence, plus on s'en approche et plus on est "contaminé" par lui, on devient comme lui sinon on l'écraserait et ce serait plus une fractale, ainsi voilà la vraie nature de la gravité. Soleil fractal, notre planète fractale, trou noir fractal, la complexité est maximisée sur la bordure car on entre dans le détail. Dans notre système le ratio 1:10 entre 2 niveaux de fractale semble omniprésent, faut dire que 10 en binaire c'est 2. On en déduit que l'humanité n'ira jamais dans l'espace, car le corps mute dès qu'on s'éloigne de notre planète, perdant son héritage, forcément il s'éloigne de la fractale, sa fractale, ou alors il faudra évoluer. On peut aller plus loin et se demander si nos mathématiques, nos précieuses "constantes" ne sont pas liées à notre fractale qui interprète, filtre ou modifie la perception du reste de l'univers( et vice versa, nous ressemblons peut-être à une planète gazeuse sans vie d'un autre point de vue). Naturellement il semble que nous pensions en idées d'où les idéogrammes, le racisme proviendrait de là, comme les systèmes de caste qui tente de se reformer, l'obsession de la spécialisation; juste des concepts qui tentent de prendre forme dans tous les sens possible. M'enfin.. les maths nous réservent encore bien des surprises.
@erwanmoreau6357
@erwanmoreau6357 6 жыл бұрын
Quelle est la recette pour mettre la notion topologique de fractals à toutes les sauces ?
@technosse2165
@technosse2165 6 жыл бұрын
Issac asimov parlait déjâ dans l'une de ses nouvelles d'un robot androïde capable de réver. La structure de son cerveau était justement basé sur la géométrie des fractals
@antoninperonnet6138
@antoninperonnet6138 6 жыл бұрын
👍👍👍👍👍👍👍👍👍
@zaratustra4275
@zaratustra4275 6 жыл бұрын
Est ce qu'il est possible de recevoir des tee-shirts et des casquettes à l’étranger ?
@20-sideddice13
@20-sideddice13 6 жыл бұрын
Sur ton exemple de la feuille de papier, on se rend compte qu'on ne plie pas de toujours de manière optimale la feuille de papier : parfois on ne forme pas le nombre maximum de régions formables en n plis. En particulier, en faisant n plis parallèles, on ne forme que n+1 régions, ce qui est beaucoup moins bon que du quadratique. Bien sûr il s'agit du cas extrême mais en pratique en faisant des plis au hasard, on n'attendra probablement pas le maximum. Est-ce un problème endémique aux feuilles de papier ou a-t-on ce genre de problèmes dans le calcul d'un réseau de neurones où (pas de chance) on aurait relativement peu de régions ? Après j'imagine que le grand nombre de dimensions règle le problème ?
@arthurreitz9540
@arthurreitz9540 6 жыл бұрын
En soit la probabilité d'être parallèle est nulle je pense. Et du coup les ligne se coupent forcément (pas forcément sur la feuille mais plus loin)
@20-sideddice13
@20-sideddice13 6 жыл бұрын
@@arthurreitz9540 Concernant le parallélisme je suis d'accord, on a une probabilité de 0, mais ça ne veut pas pour autant dire que la probabilité d'avoir le maximum de régions est de 1, si ? Après c'est peut-être juste moi qui ait du mal à visualiser ?
@pyrenees66
@pyrenees66 6 жыл бұрын
Tu es sponso par decath ?
@fredgarcialevrai
@fredgarcialevrai 6 жыл бұрын
En parlant de prosélytisme bayésien, peut-on espérer que la prochaine série s'appuie sur ton livre et porte sur le bayésianisme ?
@le_science4all
@le_science4all 6 жыл бұрын
Oui ça le sera ;)
@guillaumelimousin7988
@guillaumelimousin7988 6 жыл бұрын
@@le_science4all YES ! ENFIN ! Moi qui ait bossé pendant dix ans en recherche expérimentale (donc en utilisant Fischer... mais en comprenant bien que je pondérais cela avec du bayésien inconsciemment en moi...). Bon, faut pas foutre Fischer à la poubelle non-plus : si déjà tous les scientifiques utilisaient les stats fréquentistes sans se gourer sur ce qu'on peut leur faire dire ou pas, ce serait déjà pas mal !
@emjizone
@emjizone 2 жыл бұрын
6:50 Ah oui ? Et du coup, si on l'a comprise du premier coup, ce n'est pas normal ?
@pa5222
@pa5222 6 жыл бұрын
Si les chats sont une fractale, la morale que l'on souhaite programmer dans une IA pourrait elle être fractale aussi ?
@qyuyuyn
@qyuyuyn 6 жыл бұрын
C'est assez fascinant cette idée que le découpage entre les données qui correspondent ou non à un chat (ou à un concept quelconque) soit fractale. J'ai une question à ce sujet : est-ce compatible avec l'idée que ce découpage soit "flou" ? Je visualise bien les fractales en mode tout ou rien (j'imagine une courbe qui a des motifs quelle que soit l'échelle et qui divise l'espace en deux zones bien distinctes) mais j'ai plus de mal pour une version floue... Est-ce que ça a un sens de dire qu'un découpage de l'espace est à la fois flou et fractale ?
@hl0375
@hl0375 6 жыл бұрын
Ça me parait compatible avec cette idée de flou : on peut définir ce "flou" comme la somme (normalisée) des fractales "générées" par chaque personne. Ce qui donnerait une distribution de la probabilité qu'une personne dise qu'une image est un chat. T'aurais alors des hyper-régions où tout le monde et d'accord, et d'autres, où ce serait 50-50. Bien qu'une seule personne individuelle aurait une réponse tranchée
@guillaumelimousin7988
@guillaumelimousin7988 6 жыл бұрын
@@hl0375 Je suis d'accord : la limite fractale n'est pas floue : elle est précisément définie. Mais sa représentation est limité par le degré de précision. Donc selon le degré de précision, on obtient une limite ou une autre, et c'est ça qu'on appellerait "flou". Ce n'est pas du "vrai" flou, en fait. En tous cas si l'hypothèse de Lê est exacte.
@letransistorfou4639
@letransistorfou4639 6 жыл бұрын
au top !
@Raysenel
@Raysenel 6 жыл бұрын
En parlant de devenir bon en mathématiques (ou même retrouver/avoir un niveau décent), j'ai peut être raté un passage mais... Tu aurais quelques pistes à proposées pour, justement, apprendre les maths ? De préférence du gratuit, pour les gros pauvres et aussi pour Don Salluste :o
@hl0375
@hl0375 6 жыл бұрын
wikipedia :P
@yamorip4018
@yamorip4018 6 жыл бұрын
j'ai rien compris, mais c'est une super video
@patrickangel4880
@patrickangel4880 5 жыл бұрын
Les fractales sont liées à un principe fondamental de l'univers, le principe de la correspondance. "Ce qui est en haut est comme ce qui est en bas". Le deep learning a su s'y ajuster...
@renaudkener4082
@renaudkener4082 6 жыл бұрын
Comment fabriquer une IA GAN, chez moi ? combien me coutera-t-elle, à assembler ? Je ne parle que du hardware, le reste... C'est énorme en temps, et Euros :)
@GGenesum
@GGenesum 6 жыл бұрын
Et c'est peut être vrai aussi pour notre cerveau A hautes doses de drogues psychédéliques on peut voir et comprendre des formes géométriques (principalement des fractales extrêmement complexes, et dans différents plans et même 3 voir 4 dimensions) comme si elles correspondaient a des structures de l'esprit. "A level 8A experience can be described as the feeling of being exposed to a seemingly infinite mass of geometry comprised entirely of innately comprehensible representations which are perceived to simultaneously convey every internally stored concept, memory, process, and neurological structure stored within the mind. This experience is not just perceived through visual geometric data, but is also felt in an incomprehensible level of detail that manifests in the form of complex cognitive and physical sensations. These sensations are felt to convey an equal amount of innately understandable information as that of which is also experienced through a person's vision" psychonautwiki.org/wiki/Geometry Ce qui est conforté aussi par cette étude (que je ne peut pas vraiment comprendre, mais je pense qu'elle veut montrer que les toute hallucination visuelle provient de la perception de la structure du cortex visuel) www.math.utah.edu/~bresslof/publications/01-1.pdf Je ne pense pas que notre cerveau produise des fractales aussi complexes par hasard, surtout vu le lien avec l'intelligence artificielle.
@Fine_Mouche
@Fine_Mouche 6 жыл бұрын
J'arrive à atteindre le niveau 2 en m'appuyant sur les yeux, mais je ne le fait plus car ça bousille les yeux...
@thibautmodrzyk6292
@thibautmodrzyk6292 6 жыл бұрын
Ça m'étonnerait pas qu'on découvre des liens étonnants dans les années à venir ! Dommage que les recherches sur les psychédéliques soient très compliquées d'un point de vu légal :/
@maginth
@maginth 6 жыл бұрын
Ça me rappelle mon application d'exploration de fractales "biomorph", moi c'est des chauves souris que je m'amusais à faire apparaître par sélection ^^ Et c'est vrai qu'avec très peu de paramètre on pouvait avoir accès à une grande diversité de forme grâce au doublement de la complexité à chaque étape. Je rêve de développer une version 3D avec des transformation linéaire au lieu de similitudes et des paramètres oscillant pour animer les créatures... Si j'ai le temps un jour je suppose. github.com/maginth/Biomorph
@jospeh2509
@jospeh2509 Ай бұрын
Bonjour, je ne peux pas acceder à ton lien mais ce dont tu parles à l'air interessant. Est-ce possible de trouver cette ressource en ligne ?
@maginth
@maginth Ай бұрын
@@jospeh2509 Bonjour, merci pour votre intérêt. Mon lien semble toujours fonctionner, sur pc il faut cliquer sur «quitter youtube» quand on clique dessus, sinon copiez le et coller le dans la barre de recherche
@amphibie
@amphibie 6 жыл бұрын
"version non imbitable," j'adore, lol
@Benoit-Pierre
@Benoit-Pierre 6 жыл бұрын
👍
@brusicor02
@brusicor02 6 жыл бұрын
Alors c'est donc ça ce que tu fais avec mes expériences de chimie ? 😉 Je suis sûr que c'était un guet-apens pour me forcer à écouter l'épisode jusqu'au bout !
@le_science4all
@le_science4all 6 жыл бұрын
L'extrait chimie n'est qu'un teaser de la semaine prochaine ;)
@brusicor02
@brusicor02 6 жыл бұрын
@@le_science4all C'est donc un guet-apens pour me forcer à écouter jusqu'à la semaine prochaine ! Mais c'est diabolique ! 😲
@oufcimende3210
@oufcimende3210 6 жыл бұрын
Etonnant: Si l'I.A. voit le monde à travers les fractales et si chaque fractale correspond à une forme genre girafle, voitures, humain....du monde communAlors peut-on à partir directement d'une fractale utiliser l'I.A. pour retrouver la forme commune? voir des formes inconnues!!!
@antoinejay3574
@antoinejay3574 6 жыл бұрын
Mais du coup, notre cerveau il est plutot large ou plutot profond?
@user-qo7qt3wq7h
@user-qo7qt3wq7h 6 жыл бұрын
J'ai bien envie de savoir aussi, je pose ca la pour revenir au cas ou ;)
@Marmeloud
@Marmeloud 6 жыл бұрын
Je dirai 1000!
@pierre-antoineamiand-leroy9302
@pierre-antoineamiand-leroy9302 6 жыл бұрын
Le calcul du nombre de région est faux, puisque le nième pli ne coupe pas forcement n régions. Si par exemple on pli un coin sur une très petite distance, alors le nouveau pli ne coupera aucun ancien pli. Ou un autre exemple, si tu plies la feuille par dichotomie, en pliant de manière parallèle la moitié de la plus petite régions. Dans ce ca il y a n régions.
@tianyouzhou1988
@tianyouzhou1988 6 жыл бұрын
Hegel dit que le vrai c'est le tout. Mais en fait le tout est un fractal :)
@brunoberaud3196
@brunoberaud3196 6 жыл бұрын
Je ne comprends pas bien les implications d'une structure fractale pour modéliser une information et surtout ce que cela représente concrètement. Je pense que je ne suis pas le seul :/
@le_science4all
@le_science4all 6 жыл бұрын
Bienvenue au club XD
@Khwartz
@Khwartz 6 жыл бұрын
​@@le_science4all Cher Ley, pour moi c'est une question de ce que l'on pourrait appeler une "FIXATION MULTI-HARMONIQUE". Je m'explique : il me semble qu'il y a une forte Similitude entre le fonctionnement d'un réseau neuronal profond et le fonctionnement d'une antenne fractale. Chaque Similitude d'Échelle correspondrait à des Harmoniques. En prenant le cas du cerveaux, chaque Information est reçue sous forme d'un ensemble d'Excitations plus ou moins Complexes, et probablement plus que moins ! ^_^ Ces Structures de signaux vont "s'accrocher" au différents endroits du réseau neuronal qui seront renforcés, ou tout au moins excités, par Similarité de Structure. Les Structures Fractales pouvant être dans l'ensemble extrêmement Complexes (même si générée à partir d'un algorithme de construction simple), la probabilité que le signal en entrée "Résonne" avec une Partie de cette Structure me paraît Assez Grande. Aussi, les Fractales, par leur Similarités d'Échelles, fonctionnant comme des Harmoniques, cela me semble Favoriser le Respect du Principe De Moindre Actions, en tout cas "de Moindre Effort", je veux dire "l'utilisation de la Solution La Plus Économe En Énergie" ;) En espérant que je ne vous induis pas dans de fausses pistes vue que ce ne sont que des Intuitions ^_^ Cordialement.
@Lacher-Prise
@Lacher-Prise 6 жыл бұрын
Tiens l'ensemble des chats et "pas chats" ... Russell
@HM-qe8vl
@HM-qe8vl 6 жыл бұрын
Quid des plis parallèles?
@le_science4all
@le_science4all 6 жыл бұрын
Ils font moins de régions ^^
@ramdamdam1402
@ramdamdam1402 6 жыл бұрын
9:40 Très probable ?! Tu te laisses un peu emballer par tes souhaits là.
@steveblack2420
@steveblack2420 6 жыл бұрын
Yes j'avais trouvé que les deux images de célébrités étaient fakes :)
@SkarRaksa
@SkarRaksa 6 жыл бұрын
Ha ha! C'est la gloire! Par contre, si j'avais su. Je me serais mieux relu. C'est un peu la honte là...
@pascalzerwetz4653
@pascalzerwetz4653 6 жыл бұрын
Le sujet méritait plus de développement.... j'ai mis un pouce bas alors. Dommage je t'adore avec tes vidéos
Rendre l'IA bénéfique | Intelligence artificielle 53
25:51
Science4All
Рет қаралды 21 М.
Sigma Kid Mistake #funny #sigma
00:17
CRAZY GREAPA
Рет қаралды 30 МЛН
Cheerleader Transformation That Left Everyone Speechless! #shorts
00:27
Fabiosa Best Lifehacks
Рет қаралды 16 МЛН
小丑教训坏蛋 #小丑 #天使 #shorts
00:49
好人小丑
Рет қаралды 54 МЛН
MIT Introduction to Deep Learning | 6.S191
1:09:58
Alexander Amini
Рет қаралды 834 М.
Ce réseau décrypte 150 ans de découvertes scientifiques
22:15
Fouloscopie
Рет қаралды 289 М.
FORMATION DEEP LEARNING COMPLETE (2021)
30:57
Machine Learnia
Рет қаралды 1 МЛН
[DeepLearning | видео 1] Что же такое нейронная сеть?
19:00
3Blue1Brown translated by Sciberia
Рет қаралды 817 М.
Gloire aux erreurs (dropout) | Intelligence artificielle 45
18:31
Prix Nobel de physique 2024 sur l'intelligence artificielle
25:19
Livres et Science
Рет қаралды 417 М.
Attention in transformers, visually explained | DL6
26:10
3Blue1Brown
Рет қаралды 2 МЛН
Hypersphères | Intelligence Artificielle 19 (ft. @ElJj)
19:24
Science4All
Рет қаралды 48 М.
Sigma Kid Mistake #funny #sigma
00:17
CRAZY GREAPA
Рет қаралды 30 МЛН