Determinant of a block matrix

  Рет қаралды 29,212

Dr Peyam

Dr Peyam

Күн бұрын

Пікірлер: 57
@LuisBorja1981
@LuisBorja1981 5 жыл бұрын
Pretty colourful demonstration, I LOVE it
@JosePerez-rw6hs
@JosePerez-rw6hs 4 жыл бұрын
This is so good. Your cheering voice really warmed up my heart tonight after I was stuck on this as my homework problem for hours. So much gratitude.
@paul-thestupid1761
@paul-thestupid1761 4 жыл бұрын
The enthusiasm is strong in this one & great detailed explanation....
@SmileyHuN
@SmileyHuN 5 жыл бұрын
I usually use the general Laplace expansion formula, but this is so cool ^^
@siakamnovice
@siakamnovice 13 күн бұрын
I have a question. Must the Nullmatrix be on the lower left side? . Thus this Formula applies when the null matrix is on the lower right side?
@sebastiansiebertz1618
@sebastiansiebertz1618 5 жыл бұрын
Great video, as always! And here, just for fun, the way i would have done it: Let M = [A, B ] [0, C] with A, B, C, 0 being matrices of appropriate dimensions such that M is square (A, C being square). 1.) Assume |det(A)| > 0: B = [b1, ... , bk] C = [c1, ... , ck] bn, cm column vectors of column n and m. It then follows that det(M) = det( [A, b1, b2, ... , bk ] [0, c1, c2, .... , ck] ) Using the multinearity of the determinant function we get = det( [A, b1, b2, ... , bk ] + det([A, 0, b2, ... , bk ] [0, 0, c2, .... , ck] ) [0, c1, c2, ... , ck]) where det(M1) = det( [A, b1, b2, ... , bk ] = 0 [0, 0, c2, .... , ck] ) because b1 lies in the image of A, A being invertible by assumption, the resulting matrix does not have full rank which results in a determinant of 0. Repeating this process leaves us with det(M) = det( [A, 0, 0, ... , 0 ] [0, c1, c2, .... , ck] ) Which can be rewritten as det(M) = det( [A, 0] [0, C] ) Rewriting this diagonal block matrix as a product of two simpler diagonal block matrices results in [A, 0] = [A, 0] * [1, 0] = D1 * D2 [0, C] [0, 1] [0, C] The determinants can then be directly calculated by applying the Laplace formula for determinants det(D1) = det(A) and det(D2) = det(C) All of this culminates in the final formula det(M) = det(D1)*det(D2) = det(A)*det(C) 2.) Assume: det(A) = 0 This is the trivial case, because the matrix in the lower left corner of the block matrix has only zeros as entries. This means that the first m vectors of M (m being the dimension of A) are linear dependent which implies that M does not have full rank. Therefore det(M) = 0 = 0*det(C) = det(A)*det(C) This proofs the formula det(M) = det(A)*det(C) On a side note: A very important application of this formula comes from control engineering. It is used for the proof of the separation principle, which allows for a separate design of controller and observer for a given process. For those who want to know more, see: en.wikipedia.org/wiki/Separation_principle
@davidk7212
@davidk7212 5 жыл бұрын
Awesome video, as always. Your students are very lucky!
@guyarbel2387
@guyarbel2387 3 жыл бұрын
Please do a video about cauchy binet formula
@西元幾元
@西元幾元 3 жыл бұрын
you kept it simple and clear! appriciate it!
@jesusurieldiazmartinez656
@jesusurieldiazmartinez656 4 жыл бұрын
Thanks, I was looking for a proof of this statement for my Matrix Algebra course
@Handelsbilanzdefizit
@Handelsbilanzdefizit 5 жыл бұрын
Ok, next time when I have to calculate the determinant of a big matrix, I will look if I can seperate it in simpler blocks. But "det(A)det(C)" means: / A B \ det \ 0 C / = det (AC)
@alifruslan2728
@alifruslan2728 3 жыл бұрын
Great way to prove the theorem
@johelgoni9438
@johelgoni9438 5 жыл бұрын
Yes! More videos about block matrix pls
@lauroteixeira8507
@lauroteixeira8507 4 жыл бұрын
Clear explanation! Thanks too much!
@omaymaouhadi9315
@omaymaouhadi9315 3 жыл бұрын
Such a great explanation thaaanks a lot!!
@michalbotor
@michalbotor 5 жыл бұрын
dr peyam, what are some situations in which block matrices arise naturally?
@drpeyam
@drpeyam 5 жыл бұрын
Jordan forms, Cayley Hamilton Theorem etc
@michalbotor
@michalbotor 5 жыл бұрын
@@drpeyam thank you! :)
@shadali9045
@shadali9045 3 жыл бұрын
Was a very helpfull video . Thank you very much
@benjamindavid7371
@benjamindavid7371 2 жыл бұрын
Cheers, this is very helpful!
@masomar2318
@masomar2318 3 жыл бұрын
Thank you so much for the great explanation :)
@TheMauror22
@TheMauror22 5 жыл бұрын
This Proof is very neat!!!
@davide467
@davide467 5 жыл бұрын
When a video about the inverse of a partitioned Matrix?
@theproofessayist8441
@theproofessayist8441 5 жыл бұрын
So Block Matrix = Partitioned Matrix?
@davide467
@davide467 5 жыл бұрын
@@theproofessayist8441 yes It is
@MrRyanroberson1
@MrRyanroberson1 5 жыл бұрын
even better: since C is a matrix that can be applied to I, then the matrix [I,0,0,C][A,B,0,I] = [A,B,0,C] and therefore since the determinant is distributive, you get that det(C)det(A) = det([A,B,0,C]), without even needing to check if C is invertable or any of that.
@MrRyanroberson1
@MrRyanroberson1 5 жыл бұрын
one further step of abstraction: [I,0,0,C][I,B,0,I][A,0,0,I] = [A,B,0,C] -> det(C)det(I)det(A) = det([A,B,0,C]) and since det(I) = 1, you get the result without needing to prove anything more than the determinants of *those* three matrices.
@drpeyam
@drpeyam 5 жыл бұрын
You need to check if C is invertible
@saththiyambharathiyan8175
@saththiyambharathiyan8175 5 жыл бұрын
Why for 3×3 matrix determinant is calculated in the way it is defined ...?
@drpeyam
@drpeyam 5 жыл бұрын
Watch my video on Area of a Parallelogram it’s a similar idea in 3 dimensions
@michalbotor
@michalbotor 5 жыл бұрын
sarrus' rule is just a trick: when you're calculating a determinant of a 3 by 3 matrix M = [a b c], you're really answering the question: are these 3 3 dimensional column vectors a, b and c coplanar (detM = 0) or not. if they are, then the transformation x --> Mx = y, where x and y are 3 dimensional vectors, is going to be information destructive in a sense, that there will be no way to find matrix M^(-1), such that y --> M^(-1)y = x. We will say then, that M is not invertible or singular (behaves badly).
@saththiyambharathiyan8175
@saththiyambharathiyan8175 5 жыл бұрын
@@drpeyam i have already watched.... but I dont get satisfied with the explanation you gave..... for 2x2 matrix determinat calculated by the rule of elimination of one variable of 2 variable linear equations... Like ax+by=k1,cx+dy=k2 if we want to eliminate the y then adx-bcx,(ad-bc)x=k1d-k2b, since ad-bc determines solution of equations it is called determinant.... Like wise determinant of 3x3 matrix also should come from elimination of variables of 3 variable linear equation considering all elements matrix are coefficients of variables of linear equations.... Your geometrical interpretation of determinant such as area of parallelogram or volume of parallelopiped are later conceived interpretation using geometry.... But I don't get why 3×3 matrix determinat is calculated in the way it is defined.... When it try to find the determinant through eliminating variable .... I don't get the right answer.... i searched all internet and text books .... All the places i found the rule for calculation of determinant of 3×3 matrix .... But not concept behind that rule......
@drpeyam
@drpeyam 5 жыл бұрын
It’s the same thing like for the parallelogram, but for a parallelipiped: You take a box and subtract pyramids from it until you get a parallelipiped
@saththiyambharathiyan8175
@saththiyambharathiyan8175 5 жыл бұрын
@@drpeyam it should be until getting parallelogram.... I tried eliminating variable .... a 1x+b1y+c1z=k1,. a2x+b2y+c2z=k2, a2x+b2y+c2z=k3 to make this as parallelogram we need to eliminate third row and third column..... How to do this....?
@rigorless6330
@rigorless6330 5 жыл бұрын
I’m.... a little confused as to what counts as a block matrix. Isn’t every matrix a block matrix? Does it have to have all 0’s in the lower left corner?
@drpeyam
@drpeyam 5 жыл бұрын
Yeah, all 0s in the lower left corner, and the upper left and lower right blocks have to be square here
@madhuragrawal5685
@madhuragrawal5685 5 жыл бұрын
@@drpeyam this isn't true in every context though, right? I.e. that won't always be a constraint when talking of block matrices in general?
@meqdamqudah2331
@meqdamqudah2331 5 жыл бұрын
amazing 🔥thanks
@nrgaimingnrgaiming6730
@nrgaimingnrgaiming6730 6 ай бұрын
this is the first time i learned some thing from a gay and to be honest he save us tomorrow in the algebra exam
@raokondaMathematics
@raokondaMathematics 3 жыл бұрын
What will happen when the matrix is of type [0 A; B 0]?
@drpeyam
@drpeyam 3 жыл бұрын
Maybe -det(A)det(B)
@raokondaMathematics
@raokondaMathematics 3 жыл бұрын
@@drpeyam I don't think so....
@raokondaMathematics
@raokondaMathematics 3 жыл бұрын
@@drpeyam Actually I need the eigenvalues of the matrix of type [ 0 A; B 0] . That is first row of the matrix is [0 A], and second row of the matrix is [B, 0], where A,B are square matrices of same order and 0 is a null matrix. Here order of Null matrix=order of A=Order of B
@biswabismitabag9017
@biswabismitabag9017 4 жыл бұрын
Thank you sir 🙏🙂
@TheNachoesuncapo
@TheNachoesuncapo 5 жыл бұрын
Hi peyam!i'm your fan number π
@ssdd9911
@ssdd9911 5 жыл бұрын
i like ur shirt and what does a matrix with a T at the top right mean?
@drpeyam
@drpeyam 5 жыл бұрын
Transpose :) There’s a video on that
@rocioobispo8401
@rocioobispo8401 4 жыл бұрын
OMG :0 THANK YOU!
@sabyasachi36
@sabyasachi36 4 жыл бұрын
Lovely bro
@junhanliao1444
@junhanliao1444 4 жыл бұрын
nice shirt and nice vid :)
@mohammedal-haddad2652
@mohammedal-haddad2652 5 жыл бұрын
Very clever.
@BabaFroga
@BabaFroga 5 жыл бұрын
lol, lucky...today we were doing determinantes on University classes xD
@morriganfayehaney1372
@morriganfayehaney1372 Ай бұрын
So happy
@MegaICS
@MegaICS 5 жыл бұрын
you could have showed the original thesis by noting that [A, B; 0, C] = [A, B/2; 0, I] * [I, B/2; 0, C] and using det(M1*M2) = det(M1) * det(M2) but maybe det(M1*M2) = det(M1)*det(M2) uses this very proof so you would have a circular argument...
@shrutikagawade1155
@shrutikagawade1155 3 жыл бұрын
I don't understand what your teaching 😔😔
@drpeyam
@drpeyam 3 жыл бұрын
Check out the playlist
det A^T = det A
13:27
Dr Peyam
Рет қаралды 28 М.
The determinant | Chapter 6, Essence of linear algebra
10:03
3Blue1Brown
Рет қаралды 3,9 МЛН
How to treat Acne💉
00:31
ISSEI / いっせい
Рет қаралды 108 МЛН
So Cute 🥰 who is better?
00:15
dednahype
Рет қаралды 19 МЛН
How Strong Is Tape?
00:24
Stokes Twins
Рет қаралды 96 МЛН
Сестра обхитрила!
00:17
Victoria Portfolio
Рет қаралды 958 М.
Adjugate Matrix
10:33
Dr Peyam
Рет қаралды 7 М.
Linear Algebra - Lecture 12: Block Matrices
17:37
Nathaniel Johnston
Рет қаралды 29 М.
Matrix Factorization - Numberphile
16:34
Numberphile
Рет қаралды 381 М.
Determinante 4x4 Matrix berechnen - Laplace Entwicklungssatz
13:19
MathemaTrick
Рет қаралды 220 М.
How (and why) to raise e to the power of a matrix | DE6
27:07
3Blue1Brown
Рет қаралды 2,9 МЛН
Determinant and Elementary Row Operation
14:31
Prime Newtons
Рет қаралды 33 М.
How To Find The Determinant of a 4x4 Matrix
11:29
The Organic Chemistry Tutor
Рет қаралды 1,8 МЛН
Linear Algebra 46 | Leibniz Formula for Determinants
9:54
The Bright Side of Mathematics
Рет қаралды 4,7 М.
destroying the Lambert integral with a triple u-substitution
8:28
Determinantenformel für Blockmatrizen
17:01
The Bright Side of Mathematics
Рет қаралды 13 М.
How to treat Acne💉
00:31
ISSEI / いっせい
Рет қаралды 108 МЛН