I'm a simple mathematician. I see a Peyam video. I like the video.
@jacobpickos733 Жыл бұрын
The MAN, the MYTH, and the LEGEND. Thank you, Sir!!!
@ServerDweller3 жыл бұрын
I've got my end of years exams coming up and I can't believe I've just found a single channel that covers such a large portion of the content. I wish I had found it sooner. Thanks for the video!
@brianlamptey48235 жыл бұрын
I've tried looking for this stuff online, this is the first time I've found someone who has cared to go into the 'how'.
@jososa57179 ай бұрын
Clearest, best video on the topic. You have a gift for teaching, thank you so so much Dr. Peyam!
@dolevgo85356 жыл бұрын
MAN i literally had my linear algebra test two days ago :( damn it! anyways thank you so much!
@Selenatorgirl5442 жыл бұрын
Thank you for being so positive in every video! (please don't feel pressure bc I say that.) It's so obvious that you love math and bc of this energy of you I feel like I can solve any problem :) Thank you again!!
@drpeyam2 жыл бұрын
Thank you!!! 😁
@eduardorivera5086 жыл бұрын
Ooohhh! I'm excited for the Legend Of Zelda analogy!!
@yasseralg39285 жыл бұрын
I love you! I said it to you first before my soon-to-be wife!!
@drpeyam5 жыл бұрын
Awwwww, what an honor! 🥰
@adelbennaceur76364 жыл бұрын
thank you sir i really like your energy
@BaljinderSingh-tf2sn4 жыл бұрын
amazing what a simple explanation to problem which looked very complicated!!!!!!!!!!! thanks alot !!!!! please keep uploading the videos you are doing amazing job!!!!!!!!!!!!!!! Great work
@Titurel3 жыл бұрын
Dr. P is one of my math heroes!
@determinantmatrix95843 жыл бұрын
Really loved this video Thanks Dr. Peyam
@MrCigarro506 жыл бұрын
So great, as always, clear and helpful. Thank you.
@unless14th4 жыл бұрын
Thank you for this solution. It makes me clearly and able to prepare teaching materials easily. Your explanation is easy to understand for many people who are interested in Math.
@gvantsasakaruli9900 Жыл бұрын
You did something in such a short time that my professor has been struggling to explain for last two lectures with each being 1,5 hour long..
@jacobvandijk65252 жыл бұрын
What are you hiding behind that permanent smile? Uncertainty? A cruel parent? Naivety? Real happiness? Or what?
@axollotl58135 жыл бұрын
short simple and clear. Well Done 👍
@jimnewton4534 Жыл бұрын
do you have an example video where you diagonalize a matrix with a 0 eigenvalue or with eigvenvalues of non-1 multiplicity?
@noahalexander36075 жыл бұрын
i love this man
@mathkaveli11 Жыл бұрын
Love your work
@nawelouahrani95884 жыл бұрын
This guy is so cute, makes me want to learn more !!
@raphaelcosta43525 жыл бұрын
Tks, i love it. Linear algebra is very beatiful
@adrianleranoz136 жыл бұрын
Me encantan tus vídeos! Sigue así!
@eliascaeiro54396 жыл бұрын
42 ! Great video as always.
@bradvincent25864 жыл бұрын
wow this was insanely helpful!
@dominikstepien20006 жыл бұрын
That's great I've just started learning linear algebra, make more videos about LA, please!
@drpeyam6 жыл бұрын
I have a whole linear algebra playlist if you’re interested!
@dominikstepien20006 жыл бұрын
Dr. Peyam's Show Thank you, I love your videos, keep up with great work!
@azazahmed18422 жыл бұрын
aahhhhh sooo helpful thaaanks
@DrJessicaGrogan5 жыл бұрын
Are the signs on your null spaces for the Eigen vectors supposed to be switched?
@DrJessicaGrogan5 жыл бұрын
Wait, seeing it doesn't matter because the difference is just scaling by -1
@Contradi6 жыл бұрын
I don't know if the Legend of Zelda video you talked about is up, but does the analogy have to do with the Temple of Time in Ocarina? I won't spoil the analogy if that's it, but I have a hunch.
@drpeyam6 жыл бұрын
Will be posted on Thursday 😜
@Contradi6 жыл бұрын
Dr. Peyam's Show can't wait!
@jeongohseo36315 жыл бұрын
Thx for good lecture :) very helpful to me!!
@brandonpanuco85462 жыл бұрын
Thanks, im preparing to take my final.
@drpeyam2 жыл бұрын
Good luck!!!
@jesuisjustinian6 жыл бұрын
Just in time for my LA final today :D
@eljonaballa68533 жыл бұрын
My exam is tomorrow and here I am btw thank you for this video
@plaustrarius6 жыл бұрын
eigenventors, meaning that the output vector of the transformation is in the same direction as the input vector. that's implied when you said the matrix minus (eigenvalue) x (identity matrix) is another matrix whose null space is non zero. what is my transformation rotates all of the inputs? this means your eigenvalues would be imaginary, with the eigenvectors having imaginary components themselves. Do hyper complex numbers show up for higher dimensional transformations? I would assume so, since you would need more distinct eigenvectors for transformations of higher dimensional space. I hate calling them imaginary numbers, this is such a natural development and use of them, its hardly imaginary at all.
@lulinchuan52812 жыл бұрын
such a pity not being able to meet u at berkeley!watch your video for both math110 and ee120(matrix exponential)
@drpeyam2 жыл бұрын
I love 110
@cicciobombo74966 жыл бұрын
0:50 (A)li-A *TU TU TU TU TUM TUM TUM*
@mohammedmadani72774 жыл бұрын
I love dr peyam
@nadeenyahya13845 жыл бұрын
Thankyou well explained
@akay376 жыл бұрын
Thank you so much!
@loveen31864 жыл бұрын
great teacher
@Gabbyreel6 жыл бұрын
Thanks!
@nouralhuda35309 ай бұрын
Thank you
@jessiemanopo6 жыл бұрын
What is the nul (matrix)?
@tofu86766 жыл бұрын
let A be a matrix then nul(A) (=nullspace of A or kernel of A) is the vectorspace of all vectors which multiplied with A would yield the nullvector. So if x is in nul(A) then Ax=0 (vectors)
@Romulo_Cunha6 жыл бұрын
I'm sure you know it, but just one trick to help people find eigenvalues faster in this case, as you can notice the sum of columns is 3, which indicates one of the eigenvalues is 3, and the main diagonal tells us the sum of the eigenvalues is 7, so the other eigenvalue must be 5.
@jagadishkumarmr5312 жыл бұрын
Wait, this works!! But how?
@Romulo_Cunha2 жыл бұрын
@@jagadishkumarmr531by definition, Av=lambda*v. Assume you have a matrix which all entrances are a multiple of k. Then you can factor out the k so you will end up with a k*A which is exactly the definition of eigenvalues
@holyshit9226 жыл бұрын
... but not always diagonalization is possible Maybe something about Jordan form ? Jordan form is generalization of diagonalization
@drpeyam6 жыл бұрын
There’s a video about that :)
@holyshit9226 жыл бұрын
If you presented Jordan form correctly viewers should not have problems with diagonalization but i dont thik that 23 minutes is enough to present all cases
@Arycke6 жыл бұрын
Jacek Soplica Implying he didn't present it correctly. Both videos are simple to follow along with, albeit my main study is mathematics so I am quite biased. These videos aren't meant to be 100% comprehensive of everything except the individual problems or derivations of formulae. E.g. this and the Jordan form video serve to stimulate the viewer to delve deeper, to learn the basic methodology and terminology, and cover enough of the basics to get the viewer going in the correct direction. Also, one could try their own problem and find out that their matrix is defective and then investigate that as that is a lengthy subject to cover for beginners in a short video. The title is "How to Diagonalize," not "A Treatise on the Entirety of Matrix Diagonalization and Generalizations Thereof."
@holyshit9226 жыл бұрын
I saw both his videos and videos from MIT and i think that videos from MIT are recorded better Jordan form was deleted from MIT but i still can compare other videos I had basics of analysis (functions, sequences,series, limits,single variable calculus ) on my high school I read on forums that they have deleted it lately from teaching program
@Arycke6 жыл бұрын
Jacek Soplica Well you are entitled to think that. I don't know why you would speak of your freedom to compare videos here where it is practically irrelevant. What you said is akin to someone saying "Burger King nuggets are better" while stuffing their face with McDonald's chicken mcnuggets. Additionally, I and many others have had just as many ( or more) courses in high school than what you've described on top of their own personal endeavors. I don't see what that has to do with your original statement, so I'll write this off as a miscommunication due to a possible language and/or cultural difference. We all like mathematics and that's the most important thing my boi 💜 let's just keep it copacetic and watch any math stuff we want as we do and enjoy Dr. Peyam's enthusiasm and intelligence. Ya? :3
@meh72726 жыл бұрын
Like to dislike ratio is quite large as of now [210/0]. Its so large that we can't even comprehend it XD.
@Myuri31466 жыл бұрын
Do I have hope to get what that was promised... ?
@drpeyam6 жыл бұрын
I’ve got videos lined up until mid-October, and that one is not one of them :/
@Myuri31466 жыл бұрын
Guess I will have to watch your video till mid-October then
@omardelacruz94424 жыл бұрын
nice
@YorangeJuice3 жыл бұрын
i never liked doing diagonalization (especially orthogonal diagonalization), problems because they take soooooo long and are so tedious
@douro206 жыл бұрын
I haven't done anything with matrices in years...
@avdrago71706 жыл бұрын
When did you actually explain how to diagonalize a matrix?
@drpeyam6 жыл бұрын
This whole process of finding eigenvalues/eigenvectors is called diagonalization
@66127706 жыл бұрын
I totally agree with AV Drago. This is the first session from Dr P. that I been left asking myself "Whaaaaaat?".
@cameronspalding97925 жыл бұрын
I thought the characteristic equation was det(A-lambda I)
@drpeyam5 жыл бұрын
They’re the same since we’re setting it equal to 0
@aneeshsrinivas8923 жыл бұрын
Here we go eigen
@raichu56k4 жыл бұрын
if eigen do it, so can you !!!!!
@ib9rt6 жыл бұрын
You didn't demonstrate that A = PDP^-1 at the end? More significantly, you didn't demonstrate why this procedure works. It's like doing math by rote, without understanding.
@drpeyam6 жыл бұрын
That wasn’t the point of the video anyway!
@halbmannhalbsib98815 жыл бұрын
for intuition on the topic u can watch the videos done by 3b1b
@nursultanbaitenov75053 жыл бұрын
@@drpeyam you didnt solve P of -1
@justwest6 жыл бұрын
1337 views and 123 likes, lol
@cryptobeanbag71485 жыл бұрын
Funny guy
@Rundas694206 жыл бұрын
What's the difference between an algebra-student and a trigonometry-student? Algebra one makes sign mistanes where the trig one makes sin mistakes. I'm going to bury myself for that one xD
@AlessioAlessi2 жыл бұрын
You don't actually need to calculate that determinant for 2x2 matrices. You just need the matrix determinant and its trace and you can write down straightforward the characteristic polynomial 😌