In soviet russia 14:12, equation long-divides you.
@tinyasira61323 жыл бұрын
He is such a happyyyy man!!! 😂😂 I wish I could be this much happy too while doing linear maths! 🤣
@bakeurstew14342 ай бұрын
This madman is doing it all by hand
@ralfschmelcher96735 жыл бұрын
This is a great explanation, thank you!
@mahreenathar69284 жыл бұрын
Isn't it supposed to be 4 in the first column instead of -4?
@TheROSIEPEPPER2 жыл бұрын
I love this guy's energy
@liakondova43413 жыл бұрын
love your attitude!!
@shokan71785 жыл бұрын
"Heeeeey, but it's so much easier to factor out (lambda+1) here and (lambda+1) here!" (3:34)
@Furiac.2 жыл бұрын
love your enthusiasm about lin algebra
@aaron_mg005 жыл бұрын
Wow thank you, you made me understand how to do this, you explained it very well, but i didn't understand at all how you did the determinant, anyway i tried it using other method and i got the same solutions!! Thank you very much Greetings from Spain!!
@vitalsbat23102 жыл бұрын
For a more generalized case of cubic: You should use make the function into a depressed cubic, then solve it by comparing the depressed cubic with the identity (m+n)^3, then jump into the complex world that gives you some sort of cube root of a complex function, and you one of the solutions, the other solutions could be found with long division. But if you do this then this video will be like 10 hours
@dominicellis1867 Жыл бұрын
If you set lambda to 10, you can use number theory to perform a prime factorization. In special cases, this will lead to a factorization of lambda when converted back into a variable. A prime example of this is x^2+2x+1. This converts to 121 which factors as 11^2. 11 = x+1. For certain factors of P a*10 + b might not convert easily back to ax+b because while 5*6 = 3*10, (x-5)(x-4) \= (x-7)(x). I’d be interested in a video on the conditions where the factor ax+b = a*10+b.
@samg88322 жыл бұрын
Thank you very much. You are very effective and cool teacher.
@deborahodion47942 жыл бұрын
Good tutorial on diagonalization. Thank you
@wes96272 жыл бұрын
If you normalize each eigenvector to unity, the matrix P will be orthonormal and its inverse will equal its transpose. So no work beyond normalizing the eigenvectors is required to get P inverse.
@nullplan013 жыл бұрын
The RRT is fairly easy to prove: Let f(x) be a polynomial of nth degree with integer coefficients. Assume p/q is a rational root of that polynomial. Then f(p/q) = 0. If you multiply that equation by q^n, all terms on the left hand side will be integers. Of these, the leading term a_n p^n has the distinction of being the only term that is not a multiple q. So we can subtract it, then bracket out q on the left hand side, and we get that -a_n p^n = q(some integer). Since p and q are coprime, the only way that equation can hold is if a_n divides q. That's why the denominator must be a divisor of the leading coefficient. Returning to our equation f(p/q) * q^n = 0, we see that what is left of the constant term a_0 q^n is the only term that is not a multiple of p. Analogous to the above, it follows that p must be a divisor of a_0, so the numerator must be divisor of the constant part.
@AG-xlr5 жыл бұрын
You have a strong positive vibe💪
@MazenFiki4 жыл бұрын
my best reagrades and respect from egypt
@jerrychan40522 жыл бұрын
he is super excited. great video.
@jeremyb13465 жыл бұрын
Tant qu'on y est, on aurait même pu calculer l'inverse de A en utilisant le théorème d'Hamilton-Cayley ^^ J'ai hâte de voir la suite ! : ) On a un peu de trigonalisation de prévu ?
@buttersalad1174 жыл бұрын
that sign mistake solution was nice.
@musicismyIife2 жыл бұрын
it is so useful for me!! i wish you were my professor
@drpeyam2 жыл бұрын
❤️
@Rundas694205 жыл бұрын
But I thought that the rational roots theorem says, that if you're taking an exam, all roots of a cubic polynomial are integers between -3 and 3. And also there is one brutal formula that directly calculates the characteristic polynomial p(x). p(x)=x^3-trace(A)*x^2+(det(A1)+det(A2)+det(A3))*x-det(A). Ai is the minor of A which is acquired by bomberman-ing the i-th row and column.
@ytsimontng5 жыл бұрын
Nice exercise! I calculated P-1 to be [0 -1 1,1 2 -1, -1 -1 1] in your columnorder where the commas seperate the rows. Thanks
@AttiyaAnwarAhmed Жыл бұрын
Hello i really enjoyed the video but i have a doubt if an eigenvalue has 2 basis what will be the P matrix then ?
@jiusandrokuhn80235 жыл бұрын
Congratulations for the work. The matrix of the video cover is wrong. I tried to solve without looking at the solution and came up with a complex solution.
@cusackprep3 жыл бұрын
Why not factor by grouping at 6:30?
@nawelouahrani95884 жыл бұрын
Thank you so much for your videos ! Very clear and good energy 😊😀
@motherisape2 жыл бұрын
came to learn about digonilization of matrix learned amazing fact about polynomial
@peterhunt19683 жыл бұрын
The row reduction method seemed to me longer than simply multiplying out the vector (x, mx + c ) and then quickly solving 3 simultaneous equations. You still end up at the same place don’t you?
@drpeyam3 жыл бұрын
Never heard of this other method :)
@MonkoGames3 жыл бұрын
my teacher wants it for a 3x6 matrix where all the values are in the couple thousand except for 1 zero and im dying
@drpeyam3 жыл бұрын
Omg I’m so sorry! Also 3x6 is not possible, do you mean 6x6?
@MonkoGames3 жыл бұрын
@@drpeyam Here was the question: Let A be the 3 × 6 matrix given below: Find invertible matrices P and Q such that P AQ is a diagonal matrix with only 1s and 0s along the diagonal. I said there was no solution since invertible matrices have to be square, which wouldn't produce a square output.
@TheMauror225 жыл бұрын
What is the condition for a matrix to be diagonalizable?
@Debg915 жыл бұрын
I don't know about necessary conditions for the general case, but there are some important sufficient conditions: if the matrix is symmetric or Hermitian, it's always diagonalizable
@drpeyam5 жыл бұрын
Basically enough eigenvectors :)
@TheMauror225 жыл бұрын
Is the diagonal matrix unique for the other matrix?
@war_reimon83435 жыл бұрын
Determinant non-zero
@Idtelos3 жыл бұрын
When you see 3x3 matrix, you are hoping for Symmetric positive definite. Makes things so much easier...lol.
@drpeyam3 жыл бұрын
Definitely LOL
@rodrigogimenez83855 жыл бұрын
You could use Ruffini's Rule for that polynomial division?
@@drpeyam it's very useful. We learn it at high school as an easy way to probe some number is root of a polynomial
@마도로스J-f4o3 жыл бұрын
Thanks for the video
@drpeyam3 жыл бұрын
Welcome :)
@peterhunt19683 жыл бұрын
Thank you. Great video.
@PonyExpressOSRS4 жыл бұрын
Why divide by lambda - 1 during long division?
@drpeyam4 жыл бұрын
It’s because 1 is a root, so lambda-1 is a factor and hence we can divide by it
@Titurel3 жыл бұрын
@@drpeyam thanks for clearing that up. I was a little confused too.
@manizabayovedaste51423 жыл бұрын
Thank you very much lecture if possible you may explain for Me more and many exercises and I need to attend this class
@tusha69884 жыл бұрын
Thank u sir...♥️
@colloupdated4 жыл бұрын
u are welcomed
@gvantsasakaruli9900 Жыл бұрын
So this is basically using Horner's method to find the Lambdas
@jokerfunny11463 жыл бұрын
It is a great explanation but you made it complexly no need for all that ,teacher
@54.5mviews32 жыл бұрын
Great Work
@theechocolatpapii40525 жыл бұрын
great vid👌
@mimithewienerdog69285 жыл бұрын
Great video!!! FYI The thumbnail matrix does not match the video matrix. There's a 3 in the thumbnail where there is a 4 in the video.
@drpeyam5 жыл бұрын
Haha, clickbait 😂😂😂 But thanks, I’ll fix it
@mimithewienerdog69285 жыл бұрын
@@drpeyamHaha! Thanks!
@xavy_9212 жыл бұрын
Thank u sir ❤️
@Cupekacke Жыл бұрын
how did lamda times - 3 equal a -4lamda ?????
@hellheaven41679 ай бұрын
Show the time so we can find the issue
@pedrososa24605 жыл бұрын
If a matrix is diagonizable then it has eigenvalues?
@drpeyam5 жыл бұрын
Yeah
@LuisBorja19815 жыл бұрын
How about synthetic division showing only coefficients?
@drpeyam5 жыл бұрын
I think that works, I’ve never learned synthetic division, actually
@sunnyjung29805 жыл бұрын
you look really happy lol
@sergejavdic2 жыл бұрын
Is this really so much fun for you my man?
@drpeyam2 жыл бұрын
Yes it is!
@abhishekmazumdar20723 жыл бұрын
Amazing
@debalinanag81405 жыл бұрын
Thank you very much sir
@christiankorkies7822 Жыл бұрын
Thanks sir
@FFernandezB5 жыл бұрын
Hello! I like a lot your videos and I would like know if you can make a video of triangulization with T-conductors, minimal polinomial, etc Thanks a lot for too much math
@surajvarne39922 жыл бұрын
god bless you
@Xnibblet3 жыл бұрын
I start laughing you when you are excited about finishing. I thought the finding the eigenvalue followed the formula A-λI and not reverse, or does it matter?
@drpeyam3 жыл бұрын
Doesn’t matter, since we’re setting it to 0
@brolien37175 жыл бұрын
10:54
@mosheramakuri70395 жыл бұрын
Can you speak some what slow it understands better resy of all it was awesome thankyou so much
@drpeyam5 жыл бұрын
You can always play the video at half speed :)
@eh92785 жыл бұрын
damn, really?
@michaelchristinarichardson96602 жыл бұрын
❤
@Chsch55 жыл бұрын
olaf teaches linear algebra
@tianhanipah97834 жыл бұрын
He looks like Alex Aiono😍😅
@drpeyam4 жыл бұрын
Wow what a compliment!
@Unk0able3 жыл бұрын
Who encountered the annoying guy of amazon black Friday ads
@SmileyHuN5 жыл бұрын
Jordan normal form pls
@drpeyam5 жыл бұрын
There’s a video on that already
@postsldude Жыл бұрын
professor, i say it again. You are cute and i cant focus on question due to that 😤😤
@AbhishekSharma-ir1ym4 жыл бұрын
Kya paglo ki tarah bk rha hai
@DancingRain5 жыл бұрын
RedPenGreenPenBluePen :P
@LunaPaviseSolcryst4 жыл бұрын
Pro strats: use cubic formula @.@.
@shokan71785 жыл бұрын
First uwu
@rahmanabd82874 жыл бұрын
Make it simple.soo boring
@drpeyam4 жыл бұрын
I have a 2x2 version
@Titurel3 жыл бұрын
@@drpeyam don’t listen to him. You’re video are so exciting I eat popcorn when I watch them😊