You have no idea how incredibly helpful those short little pauses to backtrack a little and clear things up are. Thank you.
@kronikevaporation60076 жыл бұрын
Thank youtube
@abdurrezzakefe53088 жыл бұрын
Prof Strang is the best in Linear Algebra.
@musikmakerfan7 жыл бұрын
MIT is lucky to have such a great lecturer.
@dantemlima21 күн бұрын
Gilbert Strang is a towering testimony to why superb teaching is much more important to learning than digital pyrotechnics. His conforting humble stuttering shows us that he still today is in awe by this formidable piece of mathematics and invites us to recognize and confront our own difficulties in learning. Thak you professor! I admire you from afar with great joy and personal enrichment.
@jasonmarckx29125 жыл бұрын
I"m in my first linear algebra course and am in awe of how immensely powerful this branch of mathematics is. MIT is fortunate to have a superb math teacher like Prof. Strang.
@kunraiyan Жыл бұрын
gotta appreciate how he said "I did that without preparing you for it", that was so humble.
@tripp88337 жыл бұрын
1.5x speed + Gilbert Strang = happiness
@TheAllen5014 жыл бұрын
Much better than my prof who always tries to explain some very simple concepts in the most complicated fancy way so that it might make him look more qualified. The best prof should explain complicated concepts in the easiest and most comprehensible manner as possible
@georgesadler78303 жыл бұрын
These mathematical tools are very important in science and engineering. Dr. Strang is an incredible human being for linear algebra.
@musicalwanderings7380 Жыл бұрын
Thank you MIT OCW! Prof. Strang is the ultimate contributor to education! Thank you!!
@tusharadevi5385 жыл бұрын
I just love Prof.Dr.Strang's passion for teaching. He is such an amazing teacher. Having searched a lot of places to get an intuition about how different or same are eigen value decomposition and diagonalization of a matrix, voila, found all in one place. So glad to be learning concepts directly from a great mathematician like him.
@maisamayhoon5 жыл бұрын
Tushara Devi again, Indians are everywhere 😀
@bigboypal2 жыл бұрын
My Physics professors: *exhales in an annoyed fashion* "I really couldn't care less about the fact that I skipped 3 steps in my work while explaining a new concept this is extremely obvious and if you can't see it, I don't know how you made it into this class." Gilbert Strang: "I did a matrix multiplication I didn't prepare you for. I'm really sorry." Mr Strang I would literally die for you.
@MsAlarman3 жыл бұрын
You are just a genius Gilbert! This is why you teach at MIT and wants to throw light on the shadows of ignorance in education round the globe. I am in bliss Sweet Angel!
@alexandrefelicio39024 жыл бұрын
THE BEST AND MOST PASSIONATE CLASSES I HAVE EVER WATCHED ON THE TOPIC
@siddharthsingi67722 жыл бұрын
This still remains to be the best video explaining this stuff!
@MakerBen6 жыл бұрын
Thank heavens for this kind man :) More professors need to post high quality videos like this! This is super helpful! Thank you MIT!
@aarifhussain3700 Жыл бұрын
A Life time asset ❤ priceless gift by The sir Gilbert Strang
@meetghelani5222 Жыл бұрын
what an absolute joy of sitting through a course taught by prof. strang.
@adityagaykar8 жыл бұрын
Prof Gilbert Strang, thank you for the explanation. I bow to you _/\_
@c0t5566 жыл бұрын
Aditya Gaykar I’m on my knees
@laurawitt86306 жыл бұрын
I wish the professors at my university were this easy to understand!
@ihbarddx6 жыл бұрын
I suspect it helps that the lectures are aimed at engineers, rather than at mathematicians. For whatever reason, they are certainly wonderful.
@pubgplayer1720 Жыл бұрын
Amazingly succinct and powerful - so much important stuff in just 10 minutes. Thanks prof strang.
@donotwantahandle11118 ай бұрын
Came here to learn why diagonalizing a Hamiltonian is important and learnt from a real teacher!
@Raouli002 жыл бұрын
I just had this in my lacture but didnt quite understand where the diagonal matrix came from but this cleared it up for me, thank you professor
@malikialgeriankabyleswag420010 ай бұрын
So the column space of A or "transformed space by A" is the span of its eigenvectors! This makes sense of so many things you're the best Linear Algebra guy ever you legend
@natalysalcedoguerra40784 жыл бұрын
Thank you so much , excellent video.The best teacher that I ' ve seen until now.
@Kneecap226 жыл бұрын
Professor Gilbert Strang is the Stronkest at Linear Algebra! He is Lord King Captain General Warlord Supreme Commander of Linear Algebra!!!! Stronk!
@ispeakfactslol2 жыл бұрын
literally THE BEST TEACHER...
@rororoyourboat5 жыл бұрын
Thank goodness for videos like these.
@yousafali73344 жыл бұрын
First of all I would like to thank you sir for share your knowledge freely!I think it's wonderful for everyone who learn Multivariate analysis course....He/She must watch your videos.....Please share more of Calculus & other branch of mathematics...
@shwang15795 жыл бұрын
I can't believe that he can make this problem so easy for me to understand! Thx
@martindahlgren70968 жыл бұрын
You're a great lecturer! :)
@leixia64156 жыл бұрын
A^n = V * L^n * V^(-1) is actually eigenvalue decomposition of n-th power of A. Mr. Strang's illustration on how taking powers && taking differentials are like moving discretely && continuously are very a novel idea to me
@KayYesYouTuber6 жыл бұрын
Dear Prof, You are a fantastic teacher. Thank you very much.
@radicalpotato666 Жыл бұрын
More than 80 years old, but taught better than the faculty of most Math schools in the world.
@tarlanahad6 жыл бұрын
Boss of Linear Algebra
@fsiserir7 жыл бұрын
I let me go express my felling that you are the best Pr I have Seen.
@jaamalarane9594 жыл бұрын
we appriciate MIT and youtube for giving us our brain food thanks proff gilbert strang we also have herb gross for calculus
@alexanderwhittemore14917 жыл бұрын
"That's very nice... that's very nice..."
@teutadomi58233 жыл бұрын
You are the best Prof Strang!Thank you!
@umehmoses81182 жыл бұрын
I just love you Professor.
@Froodomir148 жыл бұрын
a very good teacher.
@OriginalSuschi6 ай бұрын
There is also the notion of simultaneous diagonalization, meaning two diagonalizable matrices A and B consist of a basis of vectors which are both eigenvectors of A and B at the same time. Given diagonalizable matrices A and B, the subset of all diagonalizable matrices C which are simult. diag.able with A and B with the same base change matrix, they actually form a subspace of Mat_nxn(K) (the vector space of nxn square matrices over the field K)! And since A and B are obviously simultaneously diagonalizable with themselves, we know (for A=/=0 or B =/=0 matrix) that this subspace is not just the zero subspace. Furthermore, multiplying two matrices which are simultaneously diagonalizable yields a matrix which is again diagable with the same eigenvectors as basis of vector space, and the eigenvalues are just λ1μ1, λ2μ2, …, λ_n*μ_n. And also adding them keeps them simult. diagable. One can also show commutativity under matrix addition and multiplication, anf left and right distributivity is given. Right now these form a commutative ring (since for every C, also -C is inside, 0 and 1 are also inside and unique). If we now let A and B be invertible, all simultaneously diagonalizable matrices with A and B are also invertible (except 0). Since now every matrix in this subset except the zero matrix has a multiplicative inverse, we get a new field! This field is embedded in the field of all invertible matrices which commute with A and B(but I don‘t know if these are the same or not)
@riteshvesalapu83735 жыл бұрын
I just love the lectures. You are the best sir. Kudos to you.
@saiveeryamahadevan12666 жыл бұрын
Prof. Strang is AWESOME
@LibertyAzad6 жыл бұрын
And this particular video was exceptionally helpful to me. Thank you!
@vikashdhanabal89846 жыл бұрын
the best maths teacher in the universe including the ultragenius aliens in the space
@Zephyr-tg9hu4 жыл бұрын
Reviewing for my final. Thank you so much for making it so easy.
@hujiawei67746 жыл бұрын
he makes linear algebra so beautiful to me
@infiniteprogramming62144 жыл бұрын
This vid has made my life!
@HassanOmariprofile5 жыл бұрын
Thank you Dr. Strang, great video indeed
@sanketgandhi3139 Жыл бұрын
Does V inverse always exist?
@oudarjyasensarma41995 жыл бұрын
ok I'm a little confused around 5:03 if we multiply both sides by v(inverse ) how are we getting v(inverse).A.V = "capital lambda(evm)" we're supposed to get A = evm right?
@infiniteprogramming62144 жыл бұрын
We can't equalize v*lambda*vinv with v*vinv*lambda as matrix multiplication is not commutative
@flyingbirds6794 Жыл бұрын
that is a really absolutely wonderful video!!Thank you very much
@DJ-yj1vg2 жыл бұрын
This guy is incredible
@AnkurDeka7 жыл бұрын
You are such a wonderful teacher!
@chrischris9485 жыл бұрын
If only all professors were half as good as Professor Strang.
@sushantpoudel43726 жыл бұрын
4:20 How can V have inverse? Isn't it a non square matrix?
@emenikeanigbogu93684 жыл бұрын
11:19 Professor Strang gave us the secret to time travel
@deepanshusharma82264 жыл бұрын
If time travel was possible where are our guests from the future
@dalisabe622 жыл бұрын
This of course works only if V is a square matrix and non-singular; otherwise, inverse V does not exist and the entire technique crashes. On the other hand, the SVD decomposition works for all matrices even those that are singular, because the method incorporates the transpose in place of the inverse.
@LuisGarcia-te5cr4 жыл бұрын
Thank you, very helpful explanation.
@SL-cr3vh7 жыл бұрын
Understood very clearly, thank you very much! :)
@noobody1387 жыл бұрын
What a great teacher!
@sgzhou62424 жыл бұрын
What a great mathematician!
@Genshin_suit5 жыл бұрын
only the rocking star of linear algebra can do this
@vinaykumardaivajna52602 жыл бұрын
Super helpful and thank you so much
@HS-zu3tu5 жыл бұрын
Salute to you from Japan
@albertyeung5787 Жыл бұрын
simply great
@dimasghiffari94418 жыл бұрын
makasih eyang strang :) jadi enak dan simple kalo bapak yang ngajar
@GigasnailGaming4 жыл бұрын
love this prof.
@225discovery6 жыл бұрын
such a great explanations.
@deveshvaish81823 жыл бұрын
So for any N X N matrix do we always have N eigenvalues and eigenvectors?
@sftekin40404 жыл бұрын
This is beautiful...
@emaniratnavalli32083 жыл бұрын
Thank you so so much sir.
@User-su3ut4 жыл бұрын
This video makes me wish KZbin had a superlike! 😅
@KenRubenstein5 жыл бұрын
Gilbert is a good guy.....
@bismeetsingh3525 жыл бұрын
This is beautiful!
@RobelDelelegn-y9t10 ай бұрын
Thank you.
@marcodong37495 жыл бұрын
Oh damn, You enlightened me. Thank you very much!
@gogolgullu8 жыл бұрын
thanks gil
@cianorourke71955 жыл бұрын
Thank you
@andrewl52677 жыл бұрын
Do you get the same eigenvector multiple times when an eigenvalue has an algebraic multiplicity greater than one?
@AbhishekJha-sz7cp4 жыл бұрын
both strang and mathematics are really cute
@safatkhan68397 жыл бұрын
04:20 Can someone explain to me how multiplying with V-inverse would be valid? V isn't a square matrix. Doesn't that mean that it cannot have an inverse? In other words, V-inverse doesn't exist!
@nadeemnazir2957 жыл бұрын
SAFAT KHAN dear,it is always square because here r two vectors in V that doesn't mean that itz not square...and V would b always invertible because V contains linearly independent eigen vectors X1,X2,...Xn.
@safatkhan68397 жыл бұрын
I think I assumed that the entries in V were individual scalar quantities. If the two vectors in V each have 2 elements in them, that would turn V into a 2x2 matrix and as such a square matrix. I don't see the same happening for vectors with more/less than 2 elements in them. Is my understanding correct?
@maartenmtr30227 жыл бұрын
great lecture thank you
@B.Shouvik173 жыл бұрын
he is a legend..... till 18-03-21 I was remembered that formula.......... GOD real GOD
@VFORVICTORY10002 жыл бұрын
legend ,most of the tutorial didnt say the whole thing ,they just use the definition.
@swagatodey49122 жыл бұрын
Thank you thank you
@subhramondal1344 ай бұрын
cleared a lot of doubt❤
@prateeksahni29237 жыл бұрын
beautiful
@yanningli83625 жыл бұрын
OH so clear!! Thanks a lot!
@aashsyed12773 жыл бұрын
he writes z just like my parents! shout out from really far away thankkkkkkks
@bradypeng6215 жыл бұрын
Thank you sir
@Jinouga5022 жыл бұрын
"Eye"-gen vectors and "eye"-gen values.
@innocuousobservnt23255 жыл бұрын
thanks
@gregarityNow7 жыл бұрын
GOATbert Strang
@adityanatu3 жыл бұрын
Each time you operate the same matrix on an eigenvector, you get back the same vector, just multiplied by its eigen value. So it's rather obvious that any n-th power of any matrix will have the same Eigen vectors, and Eigen values just get raised to the n-th power!
@dariodrigo37784 жыл бұрын
Why was V invertible?
@kencen40996 жыл бұрын
It is so helpful.
@yuntongzhou11854 жыл бұрын
"now that I have it in a matrix form here I can mess around with it." lol in lib