Diagonalizing a Matrix

  Рет қаралды 186,426

MIT OpenCourseWare

MIT OpenCourseWare

Күн бұрын

Пікірлер: 139
@JordanEdmundsEECS
@JordanEdmundsEECS 8 жыл бұрын
You have no idea how incredibly helpful those short little pauses to backtrack a little and clear things up are. Thank you.
@kronikevaporation6007
@kronikevaporation6007 6 жыл бұрын
Thank youtube
@abdurrezzakefe5308
@abdurrezzakefe5308 8 жыл бұрын
Prof Strang is the best in Linear Algebra.
@musikmakerfan
@musikmakerfan 7 жыл бұрын
MIT is lucky to have such a great lecturer.
@dantemlima
@dantemlima 21 күн бұрын
Gilbert Strang is a towering testimony to why superb teaching is much more important to learning than digital pyrotechnics. His conforting humble stuttering shows us that he still today is in awe by this formidable piece of mathematics and invites us to recognize and confront our own difficulties in learning. Thak you professor! I admire you from afar with great joy and personal enrichment.
@jasonmarckx2912
@jasonmarckx2912 5 жыл бұрын
I"m in my first linear algebra course and am in awe of how immensely powerful this branch of mathematics is. MIT is fortunate to have a superb math teacher like Prof. Strang.
@kunraiyan
@kunraiyan Жыл бұрын
gotta appreciate how he said "I did that without preparing you for it", that was so humble.
@tripp8833
@tripp8833 7 жыл бұрын
1.5x speed + Gilbert Strang = happiness
@TheAllen501
@TheAllen501 4 жыл бұрын
Much better than my prof who always tries to explain some very simple concepts in the most complicated fancy way so that it might make him look more qualified. The best prof should explain complicated concepts in the easiest and most comprehensible manner as possible
@georgesadler7830
@georgesadler7830 3 жыл бұрын
These mathematical tools are very important in science and engineering. Dr. Strang is an incredible human being for linear algebra.
@musicalwanderings7380
@musicalwanderings7380 Жыл бұрын
Thank you MIT OCW! Prof. Strang is the ultimate contributor to education! Thank you!!
@tusharadevi538
@tusharadevi538 5 жыл бұрын
I just love Prof.Dr.Strang's passion for teaching. He is such an amazing teacher. Having searched a lot of places to get an intuition about how different or same are eigen value decomposition and diagonalization of a matrix, voila, found all in one place. So glad to be learning concepts directly from a great mathematician like him.
@maisamayhoon
@maisamayhoon 5 жыл бұрын
Tushara Devi again, Indians are everywhere 😀
@bigboypal
@bigboypal 2 жыл бұрын
My Physics professors: *exhales in an annoyed fashion* "I really couldn't care less about the fact that I skipped 3 steps in my work while explaining a new concept this is extremely obvious and if you can't see it, I don't know how you made it into this class." Gilbert Strang: "I did a matrix multiplication I didn't prepare you for. I'm really sorry." Mr Strang I would literally die for you.
@MsAlarman
@MsAlarman 3 жыл бұрын
You are just a genius Gilbert! This is why you teach at MIT and wants to throw light on the shadows of ignorance in education round the globe. I am in bliss Sweet Angel!
@alexandrefelicio3902
@alexandrefelicio3902 4 жыл бұрын
THE BEST AND MOST PASSIONATE CLASSES I HAVE EVER WATCHED ON THE TOPIC
@siddharthsingi6772
@siddharthsingi6772 2 жыл бұрын
This still remains to be the best video explaining this stuff!
@MakerBen
@MakerBen 6 жыл бұрын
Thank heavens for this kind man :) More professors need to post high quality videos like this! This is super helpful! Thank you MIT!
@aarifhussain3700
@aarifhussain3700 Жыл бұрын
A Life time asset ❤ priceless gift by The sir Gilbert Strang
@meetghelani5222
@meetghelani5222 Жыл бұрын
what an absolute joy of sitting through a course taught by prof. strang.
@adityagaykar
@adityagaykar 8 жыл бұрын
Prof Gilbert Strang, thank you for the explanation. I bow to you _/\_
@c0t556
@c0t556 6 жыл бұрын
Aditya Gaykar I’m on my knees
@laurawitt8630
@laurawitt8630 6 жыл бұрын
I wish the professors at my university were this easy to understand!
@ihbarddx
@ihbarddx 6 жыл бұрын
I suspect it helps that the lectures are aimed at engineers, rather than at mathematicians. For whatever reason, they are certainly wonderful.
@pubgplayer1720
@pubgplayer1720 Жыл бұрын
Amazingly succinct and powerful - so much important stuff in just 10 minutes. Thanks prof strang.
@donotwantahandle1111
@donotwantahandle1111 8 ай бұрын
Came here to learn why diagonalizing a Hamiltonian is important and learnt from a real teacher!
@Raouli00
@Raouli00 2 жыл бұрын
I just had this in my lacture but didnt quite understand where the diagonal matrix came from but this cleared it up for me, thank you professor
@malikialgeriankabyleswag4200
@malikialgeriankabyleswag4200 10 ай бұрын
So the column space of A or "transformed space by A" is the span of its eigenvectors! This makes sense of so many things you're the best Linear Algebra guy ever you legend
@natalysalcedoguerra4078
@natalysalcedoguerra4078 4 жыл бұрын
Thank you so much , excellent video.The best teacher that I ' ve seen until now.
@Kneecap22
@Kneecap22 6 жыл бұрын
Professor Gilbert Strang is the Stronkest at Linear Algebra! He is Lord King Captain General Warlord Supreme Commander of Linear Algebra!!!! Stronk!
@ispeakfactslol
@ispeakfactslol 2 жыл бұрын
literally THE BEST TEACHER...
@rororoyourboat
@rororoyourboat 5 жыл бұрын
Thank goodness for videos like these.
@yousafali7334
@yousafali7334 4 жыл бұрын
First of all I would like to thank you sir for share your knowledge freely!I think it's wonderful for everyone who learn Multivariate analysis course....He/She must watch your videos.....Please share more of Calculus & other branch of mathematics...
@shwang1579
@shwang1579 5 жыл бұрын
I can't believe that he can make this problem so easy for me to understand! Thx
@martindahlgren7096
@martindahlgren7096 8 жыл бұрын
You're a great lecturer! :)
@leixia6415
@leixia6415 6 жыл бұрын
A^n = V * L^n * V^(-1) is actually eigenvalue decomposition of n-th power of A. Mr. Strang's illustration on how taking powers && taking differentials are like moving discretely && continuously are very a novel idea to me
@KayYesYouTuber
@KayYesYouTuber 6 жыл бұрын
Dear Prof, You are a fantastic teacher. Thank you very much.
@radicalpotato666
@radicalpotato666 Жыл бұрын
More than 80 years old, but taught better than the faculty of most Math schools in the world.
@tarlanahad
@tarlanahad 6 жыл бұрын
Boss of Linear Algebra
@fsiserir
@fsiserir 7 жыл бұрын
I let me go express my felling that you are the best Pr I have Seen.
@jaamalarane959
@jaamalarane959 4 жыл бұрын
we appriciate MIT and youtube for giving us our brain food thanks proff gilbert strang we also have herb gross for calculus
@alexanderwhittemore1491
@alexanderwhittemore1491 7 жыл бұрын
"That's very nice... that's very nice..."
@teutadomi5823
@teutadomi5823 3 жыл бұрын
You are the best Prof Strang!Thank you!
@umehmoses8118
@umehmoses8118 2 жыл бұрын
I just love you Professor.
@Froodomir14
@Froodomir14 8 жыл бұрын
a very good teacher.
@OriginalSuschi
@OriginalSuschi 6 ай бұрын
There is also the notion of simultaneous diagonalization, meaning two diagonalizable matrices A and B consist of a basis of vectors which are both eigenvectors of A and B at the same time. Given diagonalizable matrices A and B, the subset of all diagonalizable matrices C which are simult. diag.able with A and B with the same base change matrix, they actually form a subspace of Mat_nxn(K) (the vector space of nxn square matrices over the field K)! And since A and B are obviously simultaneously diagonalizable with themselves, we know (for A=/=0 or B =/=0 matrix) that this subspace is not just the zero subspace. Furthermore, multiplying two matrices which are simultaneously diagonalizable yields a matrix which is again diagable with the same eigenvectors as basis of vector space, and the eigenvalues are just λ1μ1, λ2μ2, …, λ_n*μ_n. And also adding them keeps them simult. diagable. One can also show commutativity under matrix addition and multiplication, anf left and right distributivity is given. Right now these form a commutative ring (since for every C, also -C is inside, 0 and 1 are also inside and unique). If we now let A and B be invertible, all simultaneously diagonalizable matrices with A and B are also invertible (except 0). Since now every matrix in this subset except the zero matrix has a multiplicative inverse, we get a new field! This field is embedded in the field of all invertible matrices which commute with A and B(but I don‘t know if these are the same or not)
@riteshvesalapu8373
@riteshvesalapu8373 5 жыл бұрын
I just love the lectures. You are the best sir. Kudos to you.
@saiveeryamahadevan1266
@saiveeryamahadevan1266 6 жыл бұрын
Prof. Strang is AWESOME
@LibertyAzad
@LibertyAzad 6 жыл бұрын
And this particular video was exceptionally helpful to me. Thank you!
@vikashdhanabal8984
@vikashdhanabal8984 6 жыл бұрын
the best maths teacher in the universe including the ultragenius aliens in the space
@Zephyr-tg9hu
@Zephyr-tg9hu 4 жыл бұрын
Reviewing for my final. Thank you so much for making it so easy.
@hujiawei6774
@hujiawei6774 6 жыл бұрын
he makes linear algebra so beautiful to me
@infiniteprogramming6214
@infiniteprogramming6214 4 жыл бұрын
This vid has made my life!
@HassanOmariprofile
@HassanOmariprofile 5 жыл бұрын
Thank you Dr. Strang, great video indeed
@sanketgandhi3139
@sanketgandhi3139 Жыл бұрын
Does V inverse always exist?
@oudarjyasensarma4199
@oudarjyasensarma4199 5 жыл бұрын
ok I'm a little confused around 5:03 if we multiply both sides by v(inverse ) how are we getting v(inverse).A.V = "capital lambda(evm)" we're supposed to get A = evm right?
@infiniteprogramming6214
@infiniteprogramming6214 4 жыл бұрын
We can't equalize v*lambda*vinv with v*vinv*lambda as matrix multiplication is not commutative
@flyingbirds6794
@flyingbirds6794 Жыл бұрын
that is a really absolutely wonderful video!!Thank you very much
@DJ-yj1vg
@DJ-yj1vg 2 жыл бұрын
This guy is incredible
@AnkurDeka
@AnkurDeka 7 жыл бұрын
You are such a wonderful teacher!
@chrischris948
@chrischris948 5 жыл бұрын
If only all professors were half as good as Professor Strang.
@sushantpoudel4372
@sushantpoudel4372 6 жыл бұрын
4:20 How can V have inverse? Isn't it a non square matrix?
@emenikeanigbogu9368
@emenikeanigbogu9368 4 жыл бұрын
11:19 Professor Strang gave us the secret to time travel
@deepanshusharma8226
@deepanshusharma8226 4 жыл бұрын
If time travel was possible where are our guests from the future
@dalisabe62
@dalisabe62 2 жыл бұрын
This of course works only if V is a square matrix and non-singular; otherwise, inverse V does not exist and the entire technique crashes. On the other hand, the SVD decomposition works for all matrices even those that are singular, because the method incorporates the transpose in place of the inverse.
@LuisGarcia-te5cr
@LuisGarcia-te5cr 4 жыл бұрын
Thank you, very helpful explanation.
@SL-cr3vh
@SL-cr3vh 7 жыл бұрын
Understood very clearly, thank you very much! :)
@noobody138
@noobody138 7 жыл бұрын
What a great teacher!
@sgzhou6242
@sgzhou6242 4 жыл бұрын
What a great mathematician!
@Genshin_suit
@Genshin_suit 5 жыл бұрын
only the rocking star of linear algebra can do this
@vinaykumardaivajna5260
@vinaykumardaivajna5260 2 жыл бұрын
Super helpful and thank you so much
@HS-zu3tu
@HS-zu3tu 5 жыл бұрын
Salute to you from Japan
@albertyeung5787
@albertyeung5787 Жыл бұрын
simply great
@dimasghiffari9441
@dimasghiffari9441 8 жыл бұрын
makasih eyang strang :) jadi enak dan simple kalo bapak yang ngajar
@GigasnailGaming
@GigasnailGaming 4 жыл бұрын
love this prof.
@225discovery
@225discovery 6 жыл бұрын
such a great explanations.
@deveshvaish8182
@deveshvaish8182 3 жыл бұрын
So for any N X N matrix do we always have N eigenvalues and eigenvectors?
@sftekin4040
@sftekin4040 4 жыл бұрын
This is beautiful...
@emaniratnavalli3208
@emaniratnavalli3208 3 жыл бұрын
Thank you so so much sir.
@User-su3ut
@User-su3ut 4 жыл бұрын
This video makes me wish KZbin had a superlike! 😅
@KenRubenstein
@KenRubenstein 5 жыл бұрын
Gilbert is a good guy.....
@bismeetsingh352
@bismeetsingh352 5 жыл бұрын
This is beautiful!
@RobelDelelegn-y9t
@RobelDelelegn-y9t 10 ай бұрын
Thank you.
@marcodong3749
@marcodong3749 5 жыл бұрын
Oh damn, You enlightened me. Thank you very much!
@gogolgullu
@gogolgullu 8 жыл бұрын
thanks gil
@cianorourke7195
@cianorourke7195 5 жыл бұрын
Thank you
@andrewl5267
@andrewl5267 7 жыл бұрын
Do you get the same eigenvector multiple times when an eigenvalue has an algebraic multiplicity greater than one?
@AbhishekJha-sz7cp
@AbhishekJha-sz7cp 4 жыл бұрын
both strang and mathematics are really cute
@safatkhan6839
@safatkhan6839 7 жыл бұрын
04:20 Can someone explain to me how multiplying with V-inverse would be valid? V isn't a square matrix. Doesn't that mean that it cannot have an inverse? In other words, V-inverse doesn't exist!
@nadeemnazir295
@nadeemnazir295 7 жыл бұрын
SAFAT KHAN dear,it is always square because here r two vectors in V that doesn't mean that itz not square...and V would b always invertible because V contains linearly independent eigen vectors X1,X2,...Xn.
@safatkhan6839
@safatkhan6839 7 жыл бұрын
I think I assumed that the entries in V were individual scalar quantities. If the two vectors in V each have 2 elements in them, that would turn V into a 2x2 matrix and as such a square matrix. I don't see the same happening for vectors with more/less than 2 elements in them. Is my understanding correct?
@maartenmtr3022
@maartenmtr3022 7 жыл бұрын
great lecture thank you
@B.Shouvik17
@B.Shouvik17 3 жыл бұрын
he is a legend..... till 18-03-21 I was remembered that formula.......... GOD real GOD
@VFORVICTORY1000
@VFORVICTORY1000 2 жыл бұрын
legend ,most of the tutorial didnt say the whole thing ,they just use the definition.
@swagatodey4912
@swagatodey4912 2 жыл бұрын
Thank you thank you
@subhramondal134
@subhramondal134 4 ай бұрын
cleared a lot of doubt❤
@prateeksahni2923
@prateeksahni2923 7 жыл бұрын
beautiful
@yanningli8362
@yanningli8362 5 жыл бұрын
OH so clear!! Thanks a lot!
@aashsyed1277
@aashsyed1277 3 жыл бұрын
he writes z just like my parents! shout out from really far away thankkkkkkks
@bradypeng621
@bradypeng621 5 жыл бұрын
Thank you sir
@Jinouga502
@Jinouga502 2 жыл бұрын
"Eye"-gen vectors and "eye"-gen values.
@innocuousobservnt2325
@innocuousobservnt2325 5 жыл бұрын
thanks
@gregarityNow
@gregarityNow 7 жыл бұрын
GOATbert Strang
@adityanatu
@adityanatu 3 жыл бұрын
Each time you operate the same matrix on an eigenvector, you get back the same vector, just multiplied by its eigen value. So it's rather obvious that any n-th power of any matrix will have the same Eigen vectors, and Eigen values just get raised to the n-th power!
@dariodrigo3778
@dariodrigo3778 4 жыл бұрын
Why was V invertible?
@kencen4099
@kencen4099 6 жыл бұрын
It is so helpful.
@yuntongzhou1185
@yuntongzhou1185 4 жыл бұрын
"now that I have it in a matrix form here I can mess around with it." lol in lib
Powers of Matrices and Markov Matrices
17:54
MIT OpenCourseWare
Рет қаралды 49 М.
Eigenvalues and Eigenvectors
19:01
MIT OpenCourseWare
Рет қаралды 241 М.
黑天使被操控了#short #angel #clown
00:40
Super Beauty team
Рет қаралды 61 МЛН
Гениальное изобретение из обычного стаканчика!
00:31
Лютая физика | Олимпиадная физика
Рет қаралды 4,8 МЛН
Laplace Transform: First Order Equation
22:38
MIT OpenCourseWare
Рет қаралды 296 М.
The Big Picture of Linear Algebra
15:57
MIT OpenCourseWare
Рет қаралды 996 М.
Diagonalizing 3x3 Matrix - Full Process [Passing Linear Algebra]
11:57
Singular Value Decomposition (the SVD)
14:11
MIT OpenCourseWare
Рет қаралды 634 М.
The Column Space of a Matrix
12:44
MIT OpenCourseWare
Рет қаралды 138 М.
The Matrix Exponential
15:32
MIT OpenCourseWare
Рет қаралды 125 М.
22. Diagonalization and Powers of A
51:50
MIT OpenCourseWare
Рет қаралды 523 М.
Overview of Differential Equations
14:04
MIT OpenCourseWare
Рет қаралды 618 М.
Diagonalization and power of a matrix
11:32
Prime Newtons
Рет қаралды 54 М.
Visualizing Diagonalization
5:00
QualityMathVisuals
Рет қаралды 27 М.