[Discrete Mathematics] Logic Laws Examples

  Рет қаралды 140,901

TrevTutor

TrevTutor

Күн бұрын

Пікірлер
@Trevtutor
@Trevtutor Жыл бұрын
Check out my new course in Propositional Logic: trevtutor.com/p/master-discrete-mathematics-propositional-logic It comes with video lectures, text lectures, practice problems, solutions, and a practice final exam!
@JuanDeSouza7
@JuanDeSouza7 5 жыл бұрын
4:49 "I don't know how we call this... whatever, I'll say it's a negation." The most sincere teacher ever! hahahah
@محمد-م5ث1ش
@محمد-م5ث1ش 3 жыл бұрын
He really is funny
@t0khyo
@t0khyo 3 жыл бұрын
@@محمد-م5ث1ش also you are a joke bro
@t0khyo
@t0khyo 3 жыл бұрын
@@محمد-م5ث1ش are u studying at Tanta University?
@esmaerlefrankie8515
@esmaerlefrankie8515 4 жыл бұрын
my lecturer really leaves it up to us to study for discrete structure so YOU ARE A GOD SENT THANK YOU MAN
@marielkayeorlido1641
@marielkayeorlido1641 6 жыл бұрын
Hello! I'm taking up Discrete Structures now, and I'm reaaaaally thankful for your videos! Your explanations are easy to understand! Thank you so much!
@corporalwaffles
@corporalwaffles 8 жыл бұрын
At 2:14, I think it's supposed to be idempotent law
@AlexThaBird
@AlexThaBird 7 жыл бұрын
It is - for people who comes by and read this. Use Idempotent here. It is notated: p ∧ p p. Thank you for pointing that out.
@alijonemerchant2793
@alijonemerchant2793 3 жыл бұрын
@@AlexThaBird Thank you, that helped a lot! I would like to add that this law works both for AND and OR!
@bestyoueverhad.2408
@bestyoueverhad.2408 3 жыл бұрын
i had first applied associative and then claimed redundance but thanks for reminding me of indempotence
@nooneg4233
@nooneg4233 2 жыл бұрын
At 2:15 theres a mistake ,indempodent law is used which states that :PVP==P,P^P==P so for P^(P^Q) ,we arrange it as( P^P)^Q as due to indempotent law P^P==P, so our conclusion is (P^Q) & next is so on with the video ..Btw thank you sir your videos are lifesaver🤍
@louis9116
@louis9116 4 жыл бұрын
7:38 the most elegant phi I've ever seen
@dichocolate
@dichocolate 4 жыл бұрын
holy fuk
@johnangeloperez9866
@johnangeloperez9866 4 жыл бұрын
so can we say that q -> q T is a definition by itself, like if A, then A is always TRUE?
@sarkersaadahmed
@sarkersaadahmed Жыл бұрын
3:35 why isnt the first one idempotant law
@aboutthereality179
@aboutthereality179 6 жыл бұрын
Thank You Trev for these examples.
@darwinmanalo4934
@darwinmanalo4934 8 жыл бұрын
This is very helpful. Please do some examples (problems and solutions) for Venn Diagram. Thank you :)
@edberaga6357
@edberaga6357 4 жыл бұрын
I don't understand the distribution law with different connectives at 3:38 ... can you explain more...?
@XeroKG
@XeroKG 2 жыл бұрын
he took the whole second bracket of (P and Q) and distributed it on each element of the first bracket
@djswagmac7763
@djswagmac7763 7 жыл бұрын
At 5:12 can you just use the absorption law for step 4?
@Trevtutor
@Trevtutor 7 жыл бұрын
Yes. Some professors don't allow Absorption as a given law, though, so it's good to show it the long way.
@raphaelgeronimo
@raphaelgeronimo Жыл бұрын
6:06 what even is "definition of the arrow"? I don't think I encountered it in your videos...
@Snoopfrogg.
@Snoopfrogg. 7 жыл бұрын
Do you have any videos on Rules of Inference?
@Carrymejane
@Carrymejane 10 ай бұрын
Before this video in the playlist
@SO-oy2li
@SO-oy2li 8 жыл бұрын
One question. For the first example step 3, (p & q) v ((p & q) & not p) for the second bracket set, since it's pretty associative, can we really just remove the brackets inside and think of it as (p & q & not p) as well?
@Trevtutor
@Trevtutor 8 жыл бұрын
Yes, we can. I keep them in for illustrative purposes so it's clear why I can use the laws I do. Some instructors may also require you to keep those there, but you don't really need them.
@nishantbisht4296
@nishantbisht4296 3 жыл бұрын
@@Trevtutor how you write false after this line . i.e., where is q????
@everchann
@everchann 2 жыл бұрын
what's the definition of the arrow?
@shubhamgoswami3722
@shubhamgoswami3722 4 жыл бұрын
~(p + q) + (~p × q) equivalent to ~p Prove it by laws + For or x for and ~ for negation
@ES50678
@ES50678 5 жыл бұрын
Is the law of the excluded middle the same as the inverse law? In a previous video where you defined the laws, you defined the inverse law as: P V -P = T, which at 7:00 you use but write it down as the law of the excluded middle.
@kodymyler304
@kodymyler304 7 жыл бұрын
do you have anything on Boolean Alg?
@RobinHood-eu4er
@RobinHood-eu4er 7 жыл бұрын
is there a way to figure out quickly which law i should use in every step ? because i always get stuck and cant simplify it seems very complicated !
@Trevtutor
@Trevtutor 7 жыл бұрын
It's really just practice and pattern recognition. Do DeMorgan's when you can, distributive when you can, and then check to see when others apply.
@nightravels4028
@nightravels4028 7 жыл бұрын
I struggled with this too. For example in this video's first question, when applying DeMorgan's law, it looked as if it could be applied to ~ (~ (p ^ q) rather than the whole thing, so you would have ~ ( ~ (p ^ q) v r ~ ( ~p v ~q) v r. Which in turn seems like it can be double negated to get (p v q) v r. But I drew the truth tables for both this answer and your correct answer and they are not logically equivalent, so clearly I used the laws incorrectly. Would you possibly be able to explain why this is an incorrect application of DeM's and how you should know how to use it like you did. Should it always be applied to the entire wff, rather than just part of it? Other than that, I can't express my thanks enough for these videos. They're absolutely fantastic, and such a huge help for my degree. Don't stop teaching!
@C0URE
@C0URE 4 жыл бұрын
Question; are we allowed to have not p v p, or is this rule strictly for not p and p?
@Ackk567
@Ackk567 4 жыл бұрын
P v (~p ^ q ) can i use absorb law and the result is ~p . Is that true??
@perpetualmamaba3750
@perpetualmamaba3750 2 жыл бұрын
qustion, for the second example, couldnt you have used the Absorbtion law for the p^(p^q))?
@perpetualmamaba3750
@perpetualmamaba3750 2 жыл бұрын
nevermind, i just realized the signs have to differ
@nooneg4233
@nooneg4233 2 жыл бұрын
@@perpetualmamaba3750 bro🤍 ,indempodent law is used which states that :PVP==P,P^P==P so for P^(P^Q) ,we arrange it as( P^P)^Q as due to indempotent law P^P==P, so our conclusion is (P^Q) & next is so on with the video ..
@pexma
@pexma 7 жыл бұрын
5:04 isn't it Inverse law? p ^ -p = F
@abdifatahmoh
@abdifatahmoh 3 жыл бұрын
Yes it's.
@christophermalecki9772
@christophermalecki9772 3 жыл бұрын
This video is super helpful. Question, can't you just say that (Q implies Q) is a T?
@char_nette
@char_nette Жыл бұрын
You still need an answer?
@asilvap
@asilvap 6 жыл бұрын
The result of the first example wouldnt make that expression ambiguos since there is no parentheses?
@Trevtutor
@Trevtutor 6 жыл бұрын
If the operators are all "and" or "or" then it's fine to omit the brackets due to associativity and commutativity.
@asilvap
@asilvap 6 жыл бұрын
Thanks!!
@murigig
@murigig 5 жыл бұрын
I think your videos should be in the syllabus 😂😂 Just saying 😪✌️
@ulysses_grant
@ulysses_grant Жыл бұрын
0:41 when you see emojis everywhere.
@kennytran3816
@kennytran3816 5 жыл бұрын
What are the hard brackets symbolizing in "not[(p and q) -> r]" ?
@razeer1232
@razeer1232 4 жыл бұрын
Just another type of brackets functioning the same way as ( ... ). He used different brackets so people don't get confused.
@rdzsystem1221
@rdzsystem1221 4 жыл бұрын
thank you bro
@MrKB_SSJ2
@MrKB_SSJ2 Жыл бұрын
1:37
@MrKB_SSJ2
@MrKB_SSJ2 Жыл бұрын
0:00
@ericgutierrez347
@ericgutierrez347 4 жыл бұрын
I FUCKING appreciate you!
@bekkiiboo619
@bekkiiboo619 8 жыл бұрын
I'm having some trouble finding the intuition behind: p-->q = ~p v q.
@Trevtutor
@Trevtutor 8 жыл бұрын
You can solve this with a truth table or with the semantics of the conditional. p->q is true if p is false or q is true. That's the same as ~p v q.
@bekkiiboo619
@bekkiiboo619 8 жыл бұрын
I appreciate your reply so much! I understand I can use the truth table, but I want more than just the computational abilities... How does this sound: The conclusion is true if p is false, automatically. This is so, because with p being false, q can be false and the statement holds true still. OR Q can be true and the statement still holds true.
@LiyosiCollins
@LiyosiCollins 6 жыл бұрын
@@bekkiiboo619 I usually not try to get the intuition for p-->q = ~p v q because: - Once I get the intuition for p -> q statement, then, for its other logically equivalent statements, I always defer to using symbolic manipulations to arrive at them, without bothering to understand the intuition for them. This is so because symbolic manipulations sometimes results into some statements that are just hard to reason about
@MwongelaJoseph-dt5ob
@MwongelaJoseph-dt5ob 2 ай бұрын
would you consider not to skip steps please😂
@e2k220
@e2k220 5 ай бұрын
thanks xqcL
@MrKB_SSJ2
@MrKB_SSJ2 Жыл бұрын
5:42
[Discrete Mathematics] Logic Laws Examples 2
3:52
TrevTutor
Рет қаралды 65 М.
LOGIC LAWS - DISCRETE MATHEMATICS
15:29
TrevTutor
Рет қаралды 438 М.
VIP ACCESS
00:47
Natan por Aí
Рет қаралды 30 МЛН
Don’t Choose The Wrong Box 😱
00:41
Topper Guild
Рет қаралды 62 МЛН
PREDICATE LOGIC and QUANTIFIER NEGATION - DISCRETE MATHEMATICS
15:08
RULES of INFERENCE - DISCRETE MATHEMATICS
12:59
TrevTutor
Рет қаралды 611 М.
How to Read Logic
27:32
Another Roof
Рет қаралды 215 М.
CONDITIONALS - DISCRETE MATHEMATICS
11:16
TrevTutor
Рет қаралды 121 М.
Propositional Logic: The Complete Crash Course
53:48
TrevTutor
Рет қаралды 94 М.
Proving logical equivalence involving the biconditional
21:03
Kailee Gray
Рет қаралды 93 М.
FACTORIALS and PERMUTATIONS - DISCRETE MATHEMATICS
14:05
TrevTutor
Рет қаралды 133 М.
INTRODUCTION to PROPOSITIONAL LOGIC - DISCRETE MATHEMATICS
11:02
Laws of propositional logic
8:12
Linda DuHadway
Рет қаралды 3,6 М.
Propositional Logic − Logical Equivalences
17:23
Neso Academy
Рет қаралды 894 М.