[Discrete Mathematics] Logic Laws Examples 2

  Рет қаралды 65,235

TrevTutor

TrevTutor

Күн бұрын

Пікірлер: 40
@Trevtutor
@Trevtutor Жыл бұрын
Check out my new course in Propositional Logic: trevtutor.com/p/master-discrete-mathematics-propositional-logic It comes with video lectures, text lectures, practice problems, solutions, and a practice final exam!
@kenmeyer100
@kenmeyer100 5 жыл бұрын
2. example: instead of introducing double negation in the 4th step, he could have easily used DeMorgan and could have been finished in the 5th step
@pacman4521
@pacman4521 3 жыл бұрын
yes, not(q or p) = (not q and not p) We would go backwards in step 4
@bluegiant13
@bluegiant13 6 жыл бұрын
I did it as such: 1. (p -> r) /\ (q -> r) | Axiom | 2. (~p v r) /\ (~q v r) | Conditional 2* | 3. (r v ~p) /\ (r v ~q) | Commutativity 2* | 4. r v (~p /\ ~q) | Distributivity | 5. (~p /\ ~q) v r | Commutativity | 6. ~(p v q) v r | DeMorgan's | 7. p v q -> r | Conditional Is this legit? Did I make any mistakes?
@thepedzed
@thepedzed 2 жыл бұрын
Looks fine, but you can get rid of step 3 + 4. Step 5 (as it is) would be the distributivity (and become renumbered to step 3).
@ES50678
@ES50678 7 жыл бұрын
So can we just "stick" a double negation where ever we want? like what was done in step 4 @2:55 ? I'm not clear on how this was done. I had used DeMorgans law before the definition of the arrow. So last three steps were: ~(qvp) v r, via DeMorgans. ~(~(qvp)) -> r, via the definition of the arrow, then I used the double negation law to end up with (qvp) -> r.
@Trevtutor
@Trevtutor 7 жыл бұрын
Depending on how your professor lets you play with the laws, you can stick a double negation anywhere and it doesn't change the truth value of a statement.
@ES50678
@ES50678 7 жыл бұрын
That's interesting. Thanks for the help! I'm on a strict software development track for my CS degree and this is one of the final courses I'm taking. I WISH I had taken it first, before any programming course. Your videos are the best, I've shared them with my class and I know they are helping everyone so much.
@calamity560
@calamity560 5 жыл бұрын
I think everyone got confused with the conditional law and the question. Firstly the question is asking for “(not p OR q)->r”, secondly the conditional law is (p->q) = (not p OR q) which can be written as (p OR q) = (not p -> q), you can prove these with truth tables. In step 4 the tutor is adding a double negation but you don’t need to, if you just follow the -> deff (or conditional law) then ((not p AND not q) OR r)) = not( not p AND not q) -> r, (In this case p = (not p AND not q), Demorgan’s law flips the OR to an AND then double negation removes the not. Hope this helps
@javaexpertsa8947
@javaexpertsa8947 6 жыл бұрын
Guys the double negation is not necessary, it took me some minutes to understand this.You can pull in Step 4, the negation out of the braces and you end up with ~(q v p) v r , since this is equal to (~q 'and' ~p) v r, now ~(q v p) v r is nothing more then (q v p) --> r, last step use the commutative law and flip q and p, so (p v q)-->r. That's it. :)
@bluegiant13
@bluegiant13 6 жыл бұрын
I also end up doing it as you did.
@phamvankhoa6117
@phamvankhoa6117 6 жыл бұрын
There is a way that solves the last example much more simple and faster. Just 4 steps However, thank you for your vids.
@uzukiz3870
@uzukiz3870 Жыл бұрын
can someone explain on how the first problem he goes from step 3 to step 4? im confused
@kRystal69
@kRystal69 10 ай бұрын
this rule: p → q = ( ¬p v q ) what he did was 3. ¬¬q v ¬p [ ¬(¬q v ¬p), this is same as, ¬(p → q) ] 4. ¬q → ¬p [ ¬(p → q) then he gave ¬ to both p and q ] I hope that helps.
@ceromb
@ceromb Жыл бұрын
I did mine like 1. (p→r) /\ (q→r) 2. (~p v r) /\ (~q v r) Conditional 3. r v (~p /\ ~q) Distributive 4. r v ~(p v q) DeMorgan's 5. ~(p v q) v r Commutative 6. (p v q) → r Conditional Did I do mine right?
@edberaga6357
@edberaga6357 4 жыл бұрын
when doing the distributive law, is the order matters? like can we do "(~p ^ ~q) v r" instead "r v (~p ^ ~q)" that later needs to add communiatative law..?
@pacman4521
@pacman4521 3 жыл бұрын
im a bit late but yes you should be able to do that lol
@aboutthereality179
@aboutthereality179 6 жыл бұрын
Thank You Trev.
@nightravels4028
@nightravels4028 7 жыл бұрын
As a couple of other comments have asked, what is the purpose of using the double negation in step 4? Is it just for shits and giggles?
@Trevtutor
@Trevtutor 7 жыл бұрын
p -> q is equivalent to ~p v q. Therefore, in order to get to ~p -> q, you must use the law on ~~p v q.
@wirito
@wirito 6 жыл бұрын
And also for shits and giggles -.-
@effy1219
@effy1219 8 жыл бұрын
what is the introduction of "the definition of arrow"
@Trevtutor
@Trevtutor 8 жыл бұрын
p->q ~pvq
@effy1219
@effy1219 8 жыл бұрын
i knew this formula, i meant how does this come
@effy1219
@effy1219 8 жыл бұрын
TheTrevTutor thanks for the reply, i didn't expect a reply from host broadcast :)))
@mistersir3185
@mistersir3185 7 жыл бұрын
idk if i can be of any help but lemme try we have, p --> q we want to prove *p --> q ~q --> ~p* = ~p v q [acc. to Conditional Disjunction] = q v ~p [Commutative Law] =~q --> ~p (in other words ~q-->~p ~~q-->~p . But ~~q=q acc. to Double Negation) and we've proved that *p-->q ~q --> ~p .*
@nightravels4028
@nightravels4028 7 жыл бұрын
It's called the conditional law formally. At least I think it is. If I'm wrong please correct me.
@bekkiiboo619
@bekkiiboo619 8 жыл бұрын
I really appreciate you making these videos, they truly help tremendously. However, this first example did not make sense, unless you can distribute the negation through: ~(q -- > p) = ~q -- > ~p. Does this work?
@Trevtutor
@Trevtutor 8 жыл бұрын
No. ~(q->p) = ~p -> ~q.
@aaronzewdu
@aaronzewdu 2 жыл бұрын
@@Trevtutor ?
@isomsg7077
@isomsg7077 Жыл бұрын
thank you
@francofazzolari7973
@francofazzolari7973 5 жыл бұрын
(2.58) What if you go from: 1__ [.....] 4__(not Q and not P) or R (apply here morgan law backwards) 5__ not(Q or P) or R (and here apply the logical equivalence conditional) 6__(Q or P) --> R ??
@MrKB_SSJ2
@MrKB_SSJ2 Жыл бұрын
1:26
@MrKB_SSJ2
@MrKB_SSJ2 Жыл бұрын
0:00
@zhenhui4386
@zhenhui4386 8 жыл бұрын
Not a good tutorial. He missed a lot of steps
@djswagmac7763
@djswagmac7763 7 жыл бұрын
ZHENHUI I'm guessing you're the 1 dislike
@wirito
@wirito 6 жыл бұрын
lol so true
@TheSulaimanKhaled
@TheSulaimanKhaled 6 жыл бұрын
true. Can someone explain what he did between 3. and 4? 1:21
@marvimilaqi6376
@marvimilaqi6376 Жыл бұрын
@@TheSulaimanKhaled 4 years late but basically another idea is when u have q v ~p u can use commutative law again to have p v q which by using Conditional law gives us p --> q and by using Contrapositive law p --> q gives us ~q --> ~p because Contrapositive law says that p --> q = ~q --> ~p
PREDICATE LOGIC and QUANTIFIER NEGATION - DISCRETE MATHEMATICS
15:08
LOGIC LAWS - DISCRETE MATHEMATICS
15:29
TrevTutor
Рет қаралды 438 М.
REAL or FAKE? #beatbox #tiktok
01:03
BeatboxJCOP
Рет қаралды 18 МЛН
[Discrete Mathematics] Sheffer Stroke Examples
5:31
TrevTutor
Рет қаралды 73 М.
[Discrete Mathematics] Logic Laws Examples
8:02
TrevTutor
Рет қаралды 140 М.
Propositional Logic: The Complete Crash Course
53:48
TrevTutor
Рет қаралды 94 М.
CONDITIONALS - DISCRETE MATHEMATICS
11:16
TrevTutor
Рет қаралды 121 М.
[Discrete Mathematics] Truth Tables Examples
5:19
TrevTutor
Рет қаралды 90 М.
PROOFS with TRUTH TABLES - DISCRETE MATHEMATICS
9:02
TrevTutor
Рет қаралды 211 М.
Logical Equivalence Proof
13:12
EECS 203
Рет қаралды 21 М.
Proving a Tautology by Using Logical Equivalences
6:24
Jason Malozzi
Рет қаралды 146 М.
Propositional Logic − Logical Equivalences
17:23
Neso Academy
Рет қаралды 894 М.