Just wanted to tell you that I love your videos. Keep it up Sir❣️
@drpeyam3 жыл бұрын
Thank you!!!
@yoav6133 жыл бұрын
What agrand finale to the series!!👌
@rasad5285 Жыл бұрын
Thankyou so much i was struggling with this topic ❤
@jsusss2 жыл бұрын
Muchas gracias! 😊
@dylank61913 жыл бұрын
Continuously differentiable functions with bounded derivatives even are Lipschitz continous, as seen in your proof if we just stop at |f(x) - f(y)|
@lucaug103 жыл бұрын
I was thinking the same thing! Good to know I wasn't wrong hahahah!
@arturcostasteiner97353 жыл бұрын
The derivative doesn't need to be continuous. All that's required is it's bounded.
@ethandole22183 жыл бұрын
I was wondering about this- good to know that it is indeed true!
@Peter_19863 жыл бұрын
I don't think that it is possible to be any more charming than Dr Peyam.
@curiosityzero21513 жыл бұрын
I love analysis videos from Dr Peyam
@deeptochatterjee5323 жыл бұрын
I'm guessing this is specifically for connected intervals then for the MVT to apply
@drpeyam3 жыл бұрын
I think so
@arturcostasteiner97353 жыл бұрын
Every interval is connected
@deeptochatterjee5323 жыл бұрын
@@arturcostasteiner9735 Yeah I guess I should have said connected subsets, which maybe by definition is an interval
@santhoshhb33973 жыл бұрын
It's very awsome
@jamesshelton38273 жыл бұрын
Any possibility you could do some videos on showing holder continuous functions?
@drpeyam3 жыл бұрын
Check out the playlist
@dgrandlapinblanc2 жыл бұрын
Ok. Thanks.
@Ghjsinshshbdgdbd3 жыл бұрын
This is so neat thank you for not waiting and releasing early😫💦
@e-learningtutor13513 жыл бұрын
Sir can you please explain about PROBABILITY DENSITY THEORM I was searching for this n iam not getting any proper video about it anywhere. So, can you please help me out sir!! Thanks sir,i like the way you lecture
@drpeyam3 жыл бұрын
Never heard of it
@e-learningtutor13513 жыл бұрын
@@drpeyam even I didn't sir But when I made a video on probability in my super 5 series,one viewer commented about it..and it was a month ago or so I was searching for it from so long ,iam not even finding related concepts of that..so I have asked you It basically says that,we can find probability even without knowing the total observations.. I was shocked after knowing this..so I have asked you sir
@sumittete28048 ай бұрын
Hello Sir...If a function is uniformly continuous on a closed interval, could we refine the definition of uniform continuity by replacing the condition |x-y| < δ and |f(x) - f(y)| < ε with |x-y| ≤ δ implying |f(x) - f(y)| ≤ ε ?
@user-wu8yq1rb9t3 жыл бұрын
Hello Dear Dr Peyam. I have a request. If it's possible, please make a video (actually another one, from a to z) about Cauchy integral and Residue theorem. Thank you
@drpeyam3 жыл бұрын
I think I already have one
@user-wu8yq1rb9t3 жыл бұрын
@@drpeyam Yeah you have and I watched it. But I think it's just an example; please if it's possible think about making a new video. And also I have another suggestions. Please make some videos about Group Theory and somehow explain to us one of the groups (like SO(5), SO(10) ...). Thanks
@user-wu8yq1rb9t3 жыл бұрын
@@drpeyam Another suggestions: As an Iranian, it would be nice if you make a video about *Khayyam Pascal's triangle*
@dwaipayansharma22822 жыл бұрын
Can we use this theorem to prove that f(x) = (√x)sinx is not UC on R(since its derivative is not bounded on R) Thanks in advance.
@yassinemohamed22353 жыл бұрын
Mr the thoerem is not applied to the interval [a,b) .because the conditions of continous should have at the interval [a,b] but not [a,b) .else you remplace this interval by [a,oo)
@drpeyam3 жыл бұрын
It works for [a,b) as well I think, and also for [a,oo)
@sudinbhattarai39643 жыл бұрын
Your fan from NEPAL
@MathAdam3 жыл бұрын
For some reason, my profanity filter blocked the thumbnail?
@drpeyam3 жыл бұрын
LOL, how? 😂😂😂
@MathAdam3 жыл бұрын
@@drpeyam My attempt at childish humour. Look at the letters in the thumbnail and read them aloud like a 9-year-old boy would. Not very sophisticated humour, I know. Please don't block me. :D
@drpeyam3 жыл бұрын
Oooooh I get it now 😂
@Wooflays3 жыл бұрын
ASU! Hope it's working out for you!
@drpeyam3 жыл бұрын
Actually I’m at TAMU now haha
@reeeeeplease11783 жыл бұрын
I think the statement is even stronger, my memory might play tricks on me tho (was HW exercise): Let f be cont. on [a,b] and diff. on (a,b). Then i) and ii) are equivalent: i) f' is bounded ii) f is UC on [a,b] *As I said, I'm not sure if it's correct* Should be intuitively correct tho; if f is UC then f can't grow "infinitely fast" (referring to def of UC), so f' should always be bounded
@reeeeeplease11783 жыл бұрын
Apparently, we need f to be Lipschitz in order for the equivalence to hold: |f(x)-f(y)| < L |x-y| Now "solve" for L L > | ... | for all x,y in (a,b) Since f is diff., we know |f'(x)| = | lim (...)| = lim | ... | < L Where *