Real Analysis | Intro to uniform continuity.

  Рет қаралды 47,652

Michael Penn

Michael Penn

Күн бұрын

We introduce the notion of uniform continuity and give some motivating examples and calculuations.
Please Subscribe: www.youtube.co...
Merch: teespring.com/...
Personal Website: www.michael-pen...
Randolph College Math: www.randolphcol...
Randolph College Math and Science on Facebook: / randolph.science
Research Gate profile: www.researchga...
Google Scholar profile: scholar.google...
If you are going to use an ad-blocker, considering using brave and tipping me BAT!
brave.com/sdp793
Buy textbooks here and help me out: amzn.to/31Bj9ye
Buy an amazon gift card and help me out: amzn.to/2PComAf
Books I like:
Abstract Algebra:
Judson(online): abstract.ups.edu/
Judson(print): amzn.to/2Xg92wD
Dummit and Foote: amzn.to/2zYOrok
Gallian: amzn.to/2zg4YEo
Artin: amzn.to/2LQ8l7C
Differential Forms:
Bachman: amzn.to/2z9wljH
Number Theory:
Crisman(online): math.gordon.edu...
Strayer: amzn.to/3bXwLah
Andrews: amzn.to/2zWlOZ0
Analysis:
Abbot: amzn.to/3cwYtuF
How to think about Analysis: amzn.to/2AIhwVm
Calculus:
OpenStax(online): openstax.org/s...
OpenStax Vol 1: amzn.to/2zlreN8
OpenStax Vol 2: amzn.to/2TtwoxH
OpenStax Vol 3: amzn.to/3bPJ3Bn
My Filming Equipment:
Camera: amzn.to/3kx2JzE
Lense: amzn.to/2PFxPXA
Audio Recorder: amzn.to/2XLzkaZ
Microphones: amzn.to/3fJED0T
Lights: amzn.to/2XHxRT0
White Chalk: amzn.to/3ipu3Oh
Color Chalk: amzn.to/2XL6eIJ

Пікірлер: 47
@hydraslair4723
@hydraslair4723 4 жыл бұрын
Really liked how you highlighted the order of quantifiers, it makes things very clear and intuitive in my opinion.
@kevinmartincossiolozano8245
@kevinmartincossiolozano8245 4 жыл бұрын
Thanks for clarifying the difference. Basically if it's uniformly continuous, Delta should work for all a. If it's only continuous, for all a, there's a Delta that works.
@tomatrix7525
@tomatrix7525 3 жыл бұрын
It was really great that you explained the subtle yet massive difference based on quantifiers. At first glance the definitions look almost the same.
@MarcoMate87
@MarcoMate87 4 жыл бұрын
At 10:31 that inequality is true only if a>=0. Generally, you need to multiply by 3|a|, not by 3a, because you are not sure of the sign of a. So, the correct inequality is 3a|a| - 3|a|
@mohamedmarghine4113
@mohamedmarghine4113 2 жыл бұрын
exactly. I was about to comment about it.
@lutstaes7084
@lutstaes7084 2 жыл бұрын
true but then you get in trouble when you add the inequalities. When you write het inequations for a>0 and a
@Rob-oj9bj
@Rob-oj9bj 4 жыл бұрын
I was almost scared we were going to stop in a place that was not a good place to stop....
@2012rcampion
@2012rcampion 4 жыл бұрын
Here's my (not very rigorous) attempt at proving x³ is not uniformly continuous: Fix ε = 1; then if x³ is uniformly continuous then ∃δ > 0 such that |x − a| < δ ⇒ |x³ − a³| < 1. Now pick x = a + δ/2, so clearly |x − a| < δ is satisfied. Now x³ − a³ = 3a²(δ/2) + 3a(δ/2)² + (δ/2)^3 > 3a(δ/2)(a + δ/2) > 3(δ/2)a². But when a = 1/√δ, this is equal to 3(δ/2)/δ = 3/2 > 1, i.e. |x³ − a³| ≮ 1. Thus no choice of δ satisfies the criteria and therefore x³ is not uniformly continuous.
@coreymonsta7505
@coreymonsta7505 4 жыл бұрын
why'd you say not very rigorous?
@ace9u
@ace9u 6 ай бұрын
A super helpful and simple video !!
@jimallysonnevado3973
@jimallysonnevado3973 4 жыл бұрын
10:03 how can he just multiply it by 3a? What if 3a is negative?
@cosimodamianotavoletti3513
@cosimodamianotavoletti3513 4 жыл бұрын
If a|3a²+3a| for all a
@goodplacetostop2973
@goodplacetostop2973 4 жыл бұрын
14:13 Almost forgot to say the line 😛
@garrycotton7094
@garrycotton7094 4 жыл бұрын
12:45 - I'm constantly confused by this in such proofs, can anyone shed some light? Why do we require the min argument here and how do we handle it when we reverse the calculations in the proof? Can we just ignore the |x-a|
@morten_8086
@morten_8086 4 жыл бұрын
@Garry Cotton we need |x-a|
@morten_8086
@morten_8086 4 жыл бұрын
And as always, we are interested in the case where the epsilons and the Deltas are very small. Thus, the assumption |x-a|
@garrycotton7094
@garrycotton7094 4 жыл бұрын
Thanks for the replies guys. I totally get why we need delta in terms for epsilon, it’s the constant 1 that confuses me. It seems arbitrary? Presumably I’m just missing the connection. Edit: I think I get it now, it’s because of the assumption that delta was equal to 1 in the scratch work. Thanks for helping me clear it up.
@morten_8086
@morten_8086 4 жыл бұрын
@@garrycotton7094 it might help you to unterstand what happens when we choose an Delta which is greater or equal to 1. :)
@morten_8086
@morten_8086 4 жыл бұрын
You will see that these cases are not important
@ismailsheik1627
@ismailsheik1627 2 жыл бұрын
11:15 why does 3a^2 +3|a|+1 need the absolute value on the a in 3a?
@wadehampton961
@wadehampton961 4 жыл бұрын
Hey Michael great video! Would you consider doing a playlist on questions from previous years' Preliminary Exams for Masters/PhD? I know this would be greatly appreciated by students trying to prepare for Masters Exams this upcoming year.
@olivier306
@olivier306 3 жыл бұрын
What a legend are you
@Subhadeep1989
@Subhadeep1989 2 жыл бұрын
How can u multiply 3a without sure about the sign of a..if a is negetive then the order of the inequality don't remain same..
@learnmathematics3806
@learnmathematics3806 2 жыл бұрын
I am from India your teaching style ossm sir 😊
@tomkerruish2982
@tomkerruish2982 4 жыл бұрын
Called it! Okay, how long to general topology?
@thunderstorm178
@thunderstorm178 4 жыл бұрын
I don't think you need all of this to start reading Munkres' book
@jrkirby93
@jrkirby93 4 жыл бұрын
Isn't uniform continuity just continuity + bounded derivative over the domain? Are there any cases where these two conditions are not necessary and sufficient to prove uniform continuity?
@Falanwe
@Falanwe 4 жыл бұрын
bounded derivative over the domain + continuity imples uniform continuity, but a founction can be uniformly continuous without being derivable (a simple exemple would be |x| )
@jrkirby93
@jrkirby93 4 жыл бұрын
@@Falanwe Doesn't |x| still have a bounded derivative over all domains? While the derivative does not exist at 0, the derivative never approaches infinity. Thus the range of the derivative would be bounded by [-1,1]
@Falanwe
@Falanwe 4 жыл бұрын
@@jrkirby93 you need to be differentiable to have a bounded derivative
@jrkirby93
@jrkirby93 4 жыл бұрын
@@Falanwe Perhaps the term I meant is "not-unbounded"?
@Falanwe
@Falanwe 4 жыл бұрын
​@@jrkirby93sqrt(x) is uniformly continuous over its domain (Sorry, I have no idea how to write radicals in those comments), but its derivative is unbounded where it's defined (everywhere except at 0). as it tends towars infinity when you approach 0. Even worse; the Weierstrass function is uniformaly continuous but differentiable nowhere! So your two condnitions are sufficient to prove uniform continuity, but absolutely not necesary.
@anirudhranjan7002
@anirudhranjan7002 3 жыл бұрын
So functions which are concave downward and bounded below are uniformly continuous? And functions which are concave upward and bounded above are uniformly continuous? This is just like an intuitive hunch that i have without any rigorous proof behind my statement. Is it true? Can someone give me an example where my statement is false.
@CM63_France
@CM63_France 4 жыл бұрын
Hi, I was wondering why you needed consulting your notes to say the ending sentence 😛
@simoanwar490
@simoanwar490 3 жыл бұрын
Thanks for clarifying vedio
@周品宏-o7w
@周品宏-o7w Жыл бұрын
11:09 I think it should be 3a²+3|a| ≦ |x²+ax+a²|, |x-a|·|x²+ax+a²| < ε → |x-a| < ε/(3a²+3|a|)
@Kasun_Chamara_Thepulasinghe
@Kasun_Chamara_Thepulasinghe 3 жыл бұрын
thank you so much ,great video :)
@anushrao882
@anushrao882 4 жыл бұрын
Thank you very much.
@Falanwe
@Falanwe 4 жыл бұрын
I don't remember uniform continuity over R being particularly useful. Uniform continuity over bounded intervals on the other hand is far more important if I'm not mistaken. For instance x^3 is not uniformly conituous over R, but is uniformly continuous over any bounded interval, so it behaves "nicely". On the other hand any continuous function that is not uniformly continuous over a bound interval (I'm sure you'll introduce exemples later, I will not spoil there) has a far more "interesting" behaviour.
@Falanwe
@Falanwe 4 жыл бұрын
@VeryEvilPettingZoo totally agree. And that's why I don't see uniform continuity over R as particularly useful, as not being uniformly continuous there does not give you much info.
@thunderstorm178
@thunderstorm178 4 жыл бұрын
14:15 He confused me
@coreymonsta7505
@coreymonsta7505 4 жыл бұрын
I like to just whoop out the |x| < min{| -1 + a | , |1 + a |} := M kind of things and throw them all over the place lol. Not elegant but it's easy and thoughtless to do
@arvindsrinivasan424
@arvindsrinivasan424 4 жыл бұрын
🔥🔥🔥
@natepolidoro4565
@natepolidoro4565 4 жыл бұрын
'Ello Brofessor Penn
@bugeigajanet2796
@bugeigajanet2796 2 жыл бұрын
wooow
@thunderstorm178
@thunderstorm178 4 жыл бұрын
Our good place to stop colleague is asleep
Real Analysis | Showing a function is not uniformly continuous.
18:36
a very aesthetic equation
14:48
Michael Penn
Рет қаралды 6 М.
Что-что Мурсдей говорит? 💭 #симбочка #симба #мурсдей
00:19
How to treat Acne💉
00:31
ISSEI / いっせい
Рет қаралды 108 МЛН
Quando eu quero Sushi (sem desperdiçar) 🍣
00:26
Los Wagners
Рет қаралды 15 МЛН
Real Analysis | The uniform continuity of sqrt(x).
14:17
Michael Penn
Рет қаралды 26 М.
What is Uniform Continuity?
6:23
Dr Peyam
Рет қаралды 30 М.
Real Analysis | Motivating uniform convergence
15:34
Michael Penn
Рет қаралды 16 М.
Real Analysis | Uniform Convergence and Continuity
18:33
Michael Penn
Рет қаралды 12 М.
Magnus Carlsen DISQUALIFIED From World Chess Championship
27:51
GothamChess
Рет қаралды 650 М.
Continuous and Uniformly Continuous Functions
5:13
Steve Stein
Рет қаралды 166 М.
18-year-old super talent stuns Magnus Carlsen | World Rapid 2024
9:34
ChessBase India
Рет қаралды 165 М.
Real Analysis | Continuity, connected sets, and the IVT.
14:23
Michael Penn
Рет қаралды 10 М.
What is mathematical thinking actually like?
9:44
Benjamin Keep, PhD, JD
Рет қаралды 16 М.
Who Wins Here??
23:31
GMHikaru
Рет қаралды 115 М.