Battle 1, integral of cos(x^2) vs integral of cos(ln(x)), @1:00 Battle 2, integral of ln(1-x^2) vs integral of ln(1-e^x), @7:55 Battle 3, integral of x^(x/ln(x)) vs integral of x^x, @16:23 Battle 4, integral of x*sqrt(x^3+4) vs integral of x*sqrt(x^4+4), @19:29 Battle 5, integral of x/ln(x) vs integral of ln(x)/x, @32:25 Battle 6, integral of ln(ln(x)) vs integral of sqrt(x*sqrt(x)), @34:00 Battle 7, integral of sqrt(sin(x)) vs integral of sin(sqrt(x)), @36:13 Battle 8, integral of sqrt(tan(x)) vs integral of tan(sqrt(x)), @40:52 Battle 9, integral of tan^-1(x) vs integral of sin^-1(x)/cos^-1(x), @59:13 Battle 10, integral of 1/(1-x^2)^(2/3) vs integral of 1/(1-x^2)^(3/2), @1:04:23 file: docs.wixstatic.com/ugd/287ba5_3f60c34605f1494498f02a83c2e62b29.pdf
@chirayu_jain5 жыл бұрын
New challange for me😊
@VibingMath5 жыл бұрын
wow nice timestamp! Should be pinned yrself!
@yaleng45975 жыл бұрын
Where are those special functions?
@angelmendez-rivera3515 жыл бұрын
Yale NG Which ones are you talking about? They never appeared in the video.
@abhishektyagi44285 жыл бұрын
SIR THE RESOURCES AND LINKS TO LEARN MATHEMATICS THAT YOU SAID IN YOUR VIDEO WITH fematika ARE STILL NOT UPLOADED IN THE DESCRIPTION OF THE VIDEO , please do upload those links
@hunter65495 жыл бұрын
Another approach to the integral of ln(1-x^2) dx would be to factor the inside and then use the product rule of logarithms to get the integral of ln(1-x) + ln(1+x) dx. It's a bit easier to solve this way.
@The1RandomFool5 жыл бұрын
Just a real minor point of #4: you could also do a hyperbolic trig substitution instead, and you'd get a simple inverse hyperbolic sine term in the final answer instead of the natural logarithm. That natural logarithm is also convertible to the inverse hyperbolic sine.
@benjaminbrady23855 жыл бұрын
Solution to integral of sqrt(tan(x)): There's a blackpenredpen video on that + c
@helloitsme75535 жыл бұрын
The way I like to think about the Integral of cos(x^2): with some clever substitutions and Euler's formula it can be shown that it can be written in terms of the integral of e^(x^2) and since that cannot be defined in terms of elementary functions, thus the integral of cos(x^2) cannot be
@aashsyed12773 жыл бұрын
heloo
@holyshit9223 жыл бұрын
22:21 Euler's substitution sqrt(u^2+4)=t-u would be better idea here Last one third Euler substution (with roots) or integrating by parts also are good option
@angelmendez-rivera3515 жыл бұрын
To integrate arcsin(x)/arccos(x) from x = -1 to x = t < 1, let x = cos(θ). Then dx = -sin(θ) dθ. The integrand is now -arcsin(cos(θ))·sin(θ)/θ. The bounds are from θ = π to θ = arccos(t). On the interval (0, π), which is the codomain and range of arccos(t), arcsin(cos(θ)) = π/2 - θ. Therefore, the integrand is -(π/2 - θ)·sin(θ)/θ. Factoring -1 will change the bounds to run from θ = arccos(t) to θ = π, with integrand (π/2 - θ)·sin(θ)/θ. By linearity, this gives the integrals of (π/2)·sin(θ)/θ and -sin(θ). The first integral is equal to (π/2)·(Si(π) - Si(arccos(t))), and the second is equal to cos(π) - cos(arccos(t)) = -(1 + t). Then the total integral is simply equal to [(π/2)·Si(π) - 1] - (t + Si[arccos(t)]). Call (π/2)·Si(π) - 1 = C, so the integral is simply C - t - Si(arccos(t)). Done! For the record, Si(x) is defined as the integral from s = 0 to s = x of sin(s)/s. We can extend the answer to other intervals, but this requires some caution, since arcsin(cos(θ)) = π/2 - θ is no longer true in other intervals.
@GSHAPIROY4 жыл бұрын
15:05 In the last two terms of that answer (before the +C) it was not necessary to use absolute value around the ln input. Respond to this comment if you can figure out why!
@iabervon5 жыл бұрын
On the first one, it was obvious, because cos(ln x)=(x^i+x^-i)/2. Power rule, separate real and imaginary coefficients, and put it back to trig functions. Even if you're not going to use complex numbers, you can guess the right integral because cos is like an exponential and goes well with ln and poorly with x^2.
@alejrandom65923 жыл бұрын
19:57 you can do both u-sub and trig-sub at the same time by letting x^2=2tan(theta) ;) then, xdx is nicely equal to sec^2 and the rest is just the usual
@OOTMI5 жыл бұрын
I love your enthusiasm!
@chirayu_jain5 жыл бұрын
I want to know, how to prove that the integral of a function is not elementary, please tell
@blackpenredpen5 жыл бұрын
Chirayu Jain It’s quite hard to prove it mathematically. I think we need to know Galois theory from advanced abstract algebra in order to do so. I actually don’t have experience in it unfortunately.
@chirayu_jain5 жыл бұрын
@@blackpenredpen, what a coincidence I started learning abstract algebra just 2 weeks before., 😁
@japotillor5 жыл бұрын
Galios Theory, it's probably easier to just know which ones are non-elementary, rather than to prove each one individually.
@angelmendez-rivera3515 жыл бұрын
Chirayu Jain You can prove the non-elementariness of an integral using the Risch algorithm.
@jongyon7192p5 жыл бұрын
@@japotillor That by itself doesn't disprove that there might be some weird unknown way to do an integral.
@ayushk38705 жыл бұрын
Integration of e^-xx from +inf To -inf with pler co-ordinates
@charlietlo42283 ай бұрын
20:00 you can directly let x = √(2tan(theta))
@giovanni19465 жыл бұрын
So nice to see a notification from bprp just after the first day of school :D
@blackpenredpen5 жыл бұрын
Thanks!!!!
@Armbrust6665 жыл бұрын
The second one was a bit over the top, ln(1-x^2)=ln((1-x)(1+x))=ln(1-x)+ln(1+x)
@GhostyOcean5 жыл бұрын
Either way you need to do integration by parts. Personally, I broke up the ln but if makes sense to use IBP with a bit of work extra then go for it. As long as you get an answer and understand the process
@-james-83435 жыл бұрын
GhostyOcean no you don’t need to do integration by parts with the method he stated. After you split the ln you can split the integral and solve them both by u sub
@angelmendez-rivera3515 жыл бұрын
-James- Integrating ln(u) requires integration by parts, so you are wrong.
@GhostyOcean5 жыл бұрын
@@-james-8343 in order to integrate ln(x) you need to do IBP unless you have the answer memorized (xln(x)-x)
@MG-hi9sh5 жыл бұрын
Gábor Tóth Tbh, it’s just as hard if you split it. I split it, and if anything, that made it harder because you have to do IBP twice.
@bodor31395 жыл бұрын
Take my love for this channel from Bangladesh.
@wenhanzhou58265 жыл бұрын
who else got a smile on the face at 16:15 because you have watched an old bprp video?
@williamadams1375 жыл бұрын
Sun and clouds me
@MG-hi9sh5 жыл бұрын
Sun and clouds Nah, I still messed it up, ffs. 😂😂😂
@sinosodialajay7975 жыл бұрын
You are a great teacher
@mokouf35 жыл бұрын
Battle 2: Don't use partial fraction! Use ln(ab) = lna + lnb rule first, much more simple!
@mcwulf254 жыл бұрын
That was my thought. ln(1+x) + ln(1-x)
@dottemar65972 жыл бұрын
That's what I did - got two standard ones.
@Mario_Altare5 жыл бұрын
I love these videos! Encore, encore :-)
@seeeeeelf2 жыл бұрын
7:55 wouldn't that be easier to just factor 1-x^2 as (1-x)(1+x) and then use the log propertry to split the ln of the product?
@Pageleplays5 жыл бұрын
15:15 „Integrale für Euch“ 😂 Grüße an alle Deutsche 🇩🇪🙌🏽
@blackpenredpen5 жыл бұрын
SGE 1899 Hahahah yea!!! Lars helped me to translate it. : )
@attamirza26024 жыл бұрын
hahahah Ehrenmann
@nchoosekmath5 жыл бұрын
Correct me if I am wrong, but at 8:50, you can factor 1-x^2 and use rule of log to expand it into 2 terms?
@blackpenredpen5 жыл бұрын
Oh yes. Then integration by parts after that. Both work
@nchoosekmath5 жыл бұрын
@@blackpenredpen Right, unless one memorize that integral of ln(x) is xln(x)-x hehe
@blackpenredpen5 жыл бұрын
n choose k yea
@KazACWizard Жыл бұрын
integrating arcsinx/arccosx is actually doable;much easier to do than the other ones mentioned as undoable previously. its just a bit of subs and ibp and using the Si function.
@byronrobbins8834 Жыл бұрын
We presently scratch the integral, if it is a non-elementary integral.
@VibingMath5 жыл бұрын
One-hour long video but u definitely spent a lot more time than that! Your effort should be appreciated! And also the patreon list grows longer everytime 😁👍 PS it's 1am here in HK and yr thumbnail looks cool with some chill 😆
@blackpenredpen5 жыл бұрын
Mak Vinci lollll thank you!! I prob will make another thumbnail tho. I don’t think that is that appealing lol
@VibingMath5 жыл бұрын
@@blackpenredpen Hey keep this kind of thumbnail man(but not too many), it makes others curious to press the thumbnail 😁
@thomasborgsmidt98012 жыл бұрын
This is the best video You have made - of those I've seen. I was especially happy to know that ln(ln(x)) is a non-fundamental function. That question has been bothering me for years.
@rbradhill5 жыл бұрын
one take, with some cuts. i dig it 😁
@reu.mathematicsacademy85662 жыл бұрын
Brilliant sir
@jayapandey25415 жыл бұрын
In India we have National Teachers' Day on 5th Sept. So, Happy Teachers' Day to BPRP and all other teachers in advance.
@JamesLewis2 Жыл бұрын
You probably made that future video already, but it is interesting to point out that the most obvious attempt to antidifferentiate arcsin(x)/arccos(x) with respect to x results in the sine integral: A basic trigonometric identity has arcsin(x)=π/2−arccos(x), from which the integrand becomes ½π/arccos(x)−1; then the substitution x=cos(y) with dx=−sin(y)dy results in the sine integral. That is, ∫arcsin(x)/arccos(x) dx = -x−½π∫sin(y)/y dy = −x−½πSi(arccos(x))+C.
@Dalton12943 жыл бұрын
Here's another way to write the answer to question 2, xln(1-x^2)-2x+2tanh^-1(x)+C
@not_intelligent57335 жыл бұрын
√tanx i love this integral same as 1/(x^6+1)
@robertl.crawford43692 жыл бұрын
Lets see those special functions!
@accountfantoccio56085 жыл бұрын
Would it actually be faster to integrate cos(ln(x)) by using the complex definition of the cosine? You would then need to integrate (x^i+x^-i)/2, which is just a matter of integrating polinomials.
@angelmendez-rivera3515 жыл бұрын
Account Fantoccio Relatively, yes.
@adityakumarvishwakarma72825 жыл бұрын
Sir please make a video on ramanujan formula on finding value of pi
@chirayu_jain5 жыл бұрын
Oon Han has made a video on it
@saradehimi47915 жыл бұрын
Big salutation from Algeria thank you Allah blesses you
@nuklearboysymbiote5 жыл бұрын
Number 8 was crazy
@ishanbanjara7345 жыл бұрын
I came here after the rap battle in 8 Miles😂... I am ready for the battle!!!
@حوداروك5 жыл бұрын
12:30 you could just directly integrate it to 2tanh^-1(x). instead of partial fractions.
@angelmendez-rivera3515 жыл бұрын
حودا روك No, because the domain would be incorrect.
@sinosodialajay7975 жыл бұрын
Please make a collaboration video with 3blue1brown together
@adamzeggai55065 жыл бұрын
YES
@azujy29595 жыл бұрын
YES
@adamzeggai55065 жыл бұрын
@@azujy2959 gosh that would be so cool
@xxgoku77745 жыл бұрын
Thumbnails are getting stronger
@indrarajgocher74655 жыл бұрын
Best videos sir for maths
@EduardoViruenaSilva3 жыл бұрын
Second round: integral 1 / (1-x^2) = arctanh x + C
@kingarth0r5 жыл бұрын
which integrals are intermediate and high school?
@benjaminbrady23855 жыл бұрын
Now solve the special function ones!
@luizkemo5 жыл бұрын
What about x^dx? Can u do ir pls?
@angelmendez-rivera3515 жыл бұрын
kemosabe What is that?
@h.m.62285 жыл бұрын
May the chenlu be with your integrals.
@GSHAPIROY4 жыл бұрын
26:25 100 Integrals #61.
@andrewwang1644 жыл бұрын
integrating ln(cos x) would be an interesting one
@Ri_F5 жыл бұрын
the ad I had for this just said "Find your Steve" 😱😱😱
@blackpenredpen5 жыл бұрын
!!!
@seroujghazarian63435 жыл бұрын
11:22-11:25 the integral of the thing you are saying needs partial fractions doesn't, actually, because the answer is clearly inverse hyperbolic tangent (Argthx/Argtanhx)
@angelmendez-rivera3515 жыл бұрын
Serouj Ghazarian Well, that's not correct either, since the domain or arctangent is different from the domain of the function we started with. Strictly speaking, partial fractions are the only correct way to get the most general antiderivative, and this can be proven.
@seroujghazarian63435 жыл бұрын
@@angelmendez-rivera351 ArGtanH, not arctan
@seroujghazarian63435 жыл бұрын
@@angelmendez-rivera351 the function we started with is ln(1-x^2), which has EXACTLY the same domain as Argtanh.
@jamez63985 жыл бұрын
My god, integral of x times the square root of (x^4 + x) is a really complicated integral. It would be even more complicated if one had to integrate sec^3(x) from scratch... 34:26 The integral of the square root of (x times the square root of x)?? The integral of the square root of (x + the square root of x)... 🙂 The integral of √(x + √x) Or the integral of 1/√(x + √x) Or the integral of 1/√(1 + √x)
@angelmendez-rivera3515 жыл бұрын
James Oldfield Obviously, it is sqrt(x·sqrt(x)). Also, the integral of x·sqrt(x^4 + x) is non-elementary, and is also not the integral dealt with in the video, and the one in the video was actually very simple.
@angelmendez-rivera3515 жыл бұрын
Also, integrating sec(x)^3 from scratch is fairly easy too.
@jamez63985 жыл бұрын
@@angelmendez-rivera351 You must be a really smart person to find this kind of thing easy. I'm still at the level of basic integration and differentiation, power rule stuff. Like 1/cube root (9x^4) + 3x^3 + x^2. Really, really basic stuff like that...
@jamez63985 жыл бұрын
@@angelmendez-rivera351 I was being cheeky. I know he said √(x√x). I was thinking it was easy (relatively), and that √(x + √x) would be a harder integral to do...
@angelmendez-rivera3515 жыл бұрын
James Oldfield I wouldn't say I'm smart, just math savvy. Anyway, I only said it's easy because that was one of the easier integrals showed in the video. Most of the other ones were more complicated. And it doesn't have anything on the integral of sqrt[tan(x)], or even worse, the cbrt[tan(x)] integral. The integral of sqrt(x + sqrt(x)) is indeed more complicated than the integral of sqrt(x·sqrt(x)). In fact, the integral is very clever. For example, if y = x + sqrt(x), then dy = [1 + 1/{2·sqrt(x)}]dx. Thus, sqrt(x + sqrt(x)) = sqrt(x + sqrt(x))[1 + 1/{2·sqrt(x)}] - sqrt(x + sqrt(x)/{2·sqrt(x)} = sqrt(x + sqrt(x))[1 + 1/{2·sqrt(x)}] - sqrt(sqrt(x) + 1)/2. Now one can split the integral in two parts using linearity. The integral of sqrt(x + sqrt(x))[1 + 1/{2·sqrt(x)}] can be found using the very simple substitution I already mentioned, and this integral will be equal to (2/3)·sqrt(x + sqrt(x))^3 + C. All the remains is evaluating the integral of sqrt(sqrt(x) + 1). Let z = sqrt(x) + 1, so x = (z - 1)^2, and dx = 2(z - 1)dz. This leaves the integral of 2z^(3/2) - 2z^(1/2) with respect to z. This is just a very basic power rule integral, and it gives the antiderivative (4/5)z^(5/2) - (4/3)z^(3/2) + C. Substitute back to get (4/5)·sqrt(sqrt(x) + 1)^5 - (4/3)·sqrt(sqrt(x) + 1)^3 + C. Altogether, the integral of sqrt(x + sqrt(x)) is nicely equal to (2/3)·sqrt(x + sqrt(x))^3 + (2/3)·sqrt(1 + sqrt(x))^3 - (2/5)·sqrt(1 + sqrt(x))^5 + C.
@jeunefofanaadamadelecolede76592 жыл бұрын
salut monsieur svp j'aimerais avoir un pdf des 100 integrale ou un pdf d'çntegrale pour licence de mathematiues svp
@kaandogan24705 жыл бұрын
Hey BPRP , can you make a video about Group Theory ?
@ssdd99115 жыл бұрын
can show hyperbolic functions more love or not?
@Промо-в1ю5 жыл бұрын
It will be a great pleasure to me, if you explain how to separate elementary from nonelementary ones. Does such formular exist?
@angelmendez-rivera3515 жыл бұрын
Промо Risch algorithm.
@centugurdag77765 жыл бұрын
Hi, cos(X square) is a function . Geogebra gives a result, if you integrate ( calculate the area) between 2 points Why we can say that this integral does not have a result.thank you For your reply
@angelmendez-rivera3515 жыл бұрын
Cent Uğurdağ Because the antiderivative of cos(x^2) is *not* the area. The antiderivative of cos(x^2) is simply another function, but the area under the curve is a number. Not remotely the same thing. Any software can calculate any area, but if you ask Geogebra to give you the antiderivative, it *cannot* and *will not* give you an answer, because there is no answer.
@centugurdag77765 жыл бұрын
İ agree but want to know why there is no antiderivative of this function
@tjli74725 жыл бұрын
Hey Im a Calculus amateur. Just wondering what method did bprp used at 38:50. Thx in advance!
@CruzW1234 ай бұрын
Hi! Four years later, are you still a calculus amateur?
@VaradMahashabde5 жыл бұрын
Question 3, the absolute troll
@juanjoselezanomartinez57145 жыл бұрын
Good video, can you please help me with this integral .. X*Sec(X)
@not_intelligent57335 жыл бұрын
Integration by parts X take D and I sec x Integration of secx is log|secx + tan x| and then its easy
@justabunga15 жыл бұрын
It's non-elementary because if you try to do IBP, you get xln(abs(sec(x)+tan(x)))-integral of ln(abs(sec(x)+tan(x)))dx. Here integral of ln(abs(sec(x)+tan(x))) is non-elementary.
@Anders30005 жыл бұрын
What font did you use in your document? Do you use LaTeX package or?
@falkinable5 жыл бұрын
For #9, the ln part turned out to be ln|cos(arctan(x))|, anyone else have this??
@angelmendez-rivera3515 жыл бұрын
Freddie Correct
@mikedavis7636 Жыл бұрын
Isn't it instead of using partial fractions, Can we not have xln (1-x²) -2x + tanh-¹ (x) +c ? As the answer?
@borntofight58875 жыл бұрын
Can you solve it Int. (x-2)/[(x-2)^2(x+3)^7]^1/3
@chirayu_jain5 жыл бұрын
How do you make your thumbnail🙏😊
@blackpenredpen5 жыл бұрын
I use “page” on Mac, math type and pictures.
@chirayu_jain5 жыл бұрын
blackpenredpen can you please give any suggestions for android phone or windows laptop as we don’t have an MacBooks or IPhones or iPads with us.
@anhadrajkhowa58502 жыл бұрын
Yall I was just vibing to the Doraemon theme song in the beginning.
@nchoosekmath5 жыл бұрын
58:05 is just insane lol
@blackpenredpen5 жыл бұрын
n choose k yea! And I didn’t do partial fractions just to save time. Lol
@halaalp97062 жыл бұрын
Why IS integral of tan (sqrt x ) impossible to solve I genuinely don't understand
@moon-ia20682 жыл бұрын
can you know if the integration is possible or not just by looking at it ? , and if yes how do you know ?
@krabbediem Жыл бұрын
Hi BPRP, and thank you for the videos :D I guess this comment will go unnoticed, but if I never ask, I'll never know :) Why are half of these functions impossible to integrate? You just mention as a fact that it's impossible but never why. I'm not great at integration, so I don't understand _why_
@jmadratz2 жыл бұрын
Do you think that Isaac newton would have been able to derive all of these integral solutions back in his day
@cyruscyros18912 жыл бұрын
On question number (8). Suppose you let integral equal to Q, then square both sides and integrate twice then take the sqr,, can it work?
@rurafs79345 жыл бұрын
Wait... 1 hour 😯💚
@muscleeagle_10 ай бұрын
I never forget the chendu😆
@Lamiranta5 жыл бұрын
bprp: *showing 8 integral battle* me: ...here we go again
@angelmendez-rivera3515 жыл бұрын
Konstantin Cherkai 10*
@herlysqr16505 жыл бұрын
How we can know what is elementary and what is not?
@vijayrathore48115 жыл бұрын
Sir ,What is the integral of ∫(1-x^2)^n dx
@Proximachannel5 жыл бұрын
I like your microphone
@jarogniewborkowski52844 жыл бұрын
Did You make already any video with non-elementary integrals like eliptic ones?
@oscartroncoso25855 жыл бұрын
LETS GO!
@sinosodialajay7975 жыл бұрын
On 14 September it is teacher's day in India . Please make a excellent special video on the day.
@Paul-ob2hy5 жыл бұрын
for number 2, isn’t the int of 2/1-x^2 just 2arccot(x)?
@angelmendez-rivera3515 жыл бұрын
Yes.
@asparkdeity87173 жыл бұрын
It’s 2artanh(x), like the hyperbolic inverse tanh function
@bryangohmppac64175 жыл бұрын
Sir, why don't you make a video about proving that the ramanujan formula
@jackhounsom88675 жыл бұрын
Isn’t it easier on the 2nd one to change it from ln(1-x^2) to ln((1-x)(1+x))=ln(1-x) + ln(1+x) and integrate like that?
@angelmendez-rivera3515 жыл бұрын
Jack Hounsom Eh... it's about as easy, but it depends
@MG-hi9sh5 жыл бұрын
Jack Hounsom Nah, it’s worse, I did it, and trust me, it’s worse.
@mathswithpana2 жыл бұрын
hello brother. I get a different answer for number 2 intergral ln(1-x^2)dx instead of 1-x i get x-1 and 1+x is same as x+1
@urvpatel8295 жыл бұрын
BPRP how to find range of Sinx-√3.cosx+1
@iabervon5 жыл бұрын
There's a formula for turning a linear combination of sin and cos into a single sin (or cos) with a phase shift and coefficient. Then you just need to adjust the range for adding 1.
@MikFrost004 жыл бұрын
But how do we know it's impossible to integrate cos(x^2)?
@MikFrost004 жыл бұрын
@@1315-z1p yh that is true but how do we know that
@MikFrost004 жыл бұрын
@@1315-z1p hmm I think there is a proof in Galois theory
@mohammadzuhairkhan86615 жыл бұрын
For no. 8, can't we split 1/(t^2-2) into partial fractions and use ln? It is much friendlier than coth. Also, why coth instead of tanh?
@blackpenredpen5 жыл бұрын
Yes. But it would be just longer...
@mohammadzuhairkhan86615 жыл бұрын
@@blackpenredpen But why coth instead of say tanh? According to you they are identical...
@angelmendez-rivera3515 жыл бұрын
Mohammad Zuhair Khan ln in this situation is not friendlier than ln, since the inside of ln would be a complicated expression. In fact, coth is expressible in terms of ln, so that makes your point moot.
@MG-hi9sh5 жыл бұрын
blackpenredpen Tbf, I prefer it because you can see how you get the answer, whereas the tanh is just a standard formula.
@dkravitz782 жыл бұрын
Number 2 way easier to write ln(1-x^2)=ln(1+x)+ln(1-x)
@Ni9995 жыл бұрын
I hate that solution for ∫ √tanx dx and prefer this one - ∫ (√tanx + √cotx)/2 dx + ∫ (√tanx - √cotx)/2 dx Use the common denominator, √sinxcosx and split 2 into √2*√2, and rearrange - √½∫ (sinx+cosx)/√(2sinxcosx) dx + √½∫ (sinx-cosx)/√(2sinxcosx) dx Wouldn't it be nice if we had a way to use sin²x + cos²x = *1* on the bottom? *2sinxcosx* = 1 - ( *1* - 2sinxcosx) *= 1 - (sinx - cosx)²* = ( *1* + 2sinxcosx) - 1 *= (sinx + cosx)² - 1* Substitute each one - √½∫ (sinx+cosx)/√(1-(sinx-cosx)²) dx + √½∫ (sinx-cosx)/√((sinx+cosx)²-1) dx Substitute t = sinx - cosx u = sinx + cosx √½∫ 1/√(1-t²) dt *-* √½∫ 1/(√u²-1) du = √½sin¯¹(t) - √½cosh¯¹(u) + C *Substitute back for t and u and you're done,* unless you prefer to use ln|u+√(u²-1)| in place of cosh¯¹(u). If so remember that √(u²-1) = √(2sinxcosx) and everyone converts that to √sin(2x) for no useful reason I can see but there it is if you want it. Note that √½ is really (1/√2) but I don't have all day to type that and you don't have all day parsing parentheses in a KZbin comment. I'm sure it doesn't matter and it's probably just me but I find that solution a whole lot cleaner, easier to follow, and easier to remember with fewer chances of making an algebra mistake. The long, drawn out version is called _Trigonometric Twins_ (not my video) at kzbin.info/www/bejne/moWbk2utds-Hga8 and watch out for the typo near the end. You probably need to learn the method bprp showed to pass a test though. I don't know. I also find the similarity of the intermediate form compared to the algebraic answer in the video pretty interesting. √½∫ (√tanx + √cotx)/√2 dx + √½∫ (√tanx - √cotx)/√2 dx
@angelmendez-rivera3515 жыл бұрын
Ni999 Wow, well, this is just extremely pedantic as a comment. Let me address a few things: 1. This is not that much simpler to what is on the video, contrary to what you claim. And the answer he gave was not in its simplest terms, so disputing elegance there is futile. 2. 2sin(x)cos(x) is simplified to sin(2x) because it is, well, *simpler.* Individual trigonometric functions are always preferable to products thereof. 3. BPRP's method is generalizable to higher order roots of tan(x), whereas yours is not. And considering the precedent this has on the channel, it makes perfect sense he explained it the way he did it.
@Ni9995 жыл бұрын
@@angelmendez-rivera351 Ok. 1. It's simpler *for me.* At the end of his solution, bprp had to look more than once to make sure of the substitutions at the end. I hit that same thing every time using the algebraic method for this particular problem. If you say it's not more elegant, fine. It's certainly easier *for me* to finish the substitutions. 2. If I'm using it to solve for a definite integral, and I've already pulled up (or coded) the solutions for sinx and cosx and stored them, then it's easier to multiply the two stored values than to pull up a third trig function. 3. Bprp has a video showing 4 ways to solve ∫ secx dx. The other three ways provide beneficial exercise and food for thought. He even has an alternative video (can't remember it off hand) where he shows integration using this same method - ∫ f(x) dx = ½∫ f(x)+g(x) dx + ½∫ f(x)-g(x) dx. So it's not just "my way" and he didn't avoid showing the overall method elsewhere because it couldn't be generalized. I never said that one ought not learn what he taught. I even said that you'd probably need to know his way for a test - that instrument to exhibit long-term learning. I thought that others who had missed the method would find it interesting. I'm not going to apologize because you found my comment pendantic - especially given that you felt the need to resort to numbered paragraphs. I thought this was also math for fun and anyone is free to agree and laugh with me or disagree and laugh at me. Either way, it's all good. Clearly I was dead wrong. Let me know if you want me to delete the comment (and therefore the thread), it makes no difference to me. Everyone who knows this channel knows who you are and respects you. I won't be bothering you again.
@rurafs79345 жыл бұрын
How to do that (long division)?
@pradoalan6818 Жыл бұрын
56:36
@surajsanganbhatla59055 жыл бұрын
Only between you and me!😁
@felixangelsanchezmendez14665 жыл бұрын
Could you solve this integral? Integral of (secx)^(3/2). I wish you did it. Thanks for giving a lot of support
@angelmendez-rivera3515 жыл бұрын
Angel Mendes This integral is non-elementary, so there is no solution anyone can give you that you would be satisfied with.
@felixangelsanchezmendez14665 жыл бұрын
Thank you so much, bro
@ayushjuvekar5 жыл бұрын
Hey bprp, what font do you use in your files and thumbnails?
@SR-kd4wi5 жыл бұрын
Can you teach us group theory?
@benjaminbrady23855 жыл бұрын
Lol, I speak Irish but I don't know if that helps in the slightest
@warrickdawes79005 жыл бұрын
Almost an f-bomb at 27:35!
@pichass93375 жыл бұрын
What do you mean by elementary?
@angelmendez-rivera3515 жыл бұрын
Liam Martin 2: Electric Boogaloo Cannot be expressed as an algebraic combination of polynomials, exponentials, factorials, ordinary trigonometric or hyperbolic functions, absolute values, or the inverses of any of the above.