Relativité générale (séance 2a)

  Рет қаралды 9,012

Etienne Parizot

Etienne Parizot

Күн бұрын

Пікірлер: 27
@ibrahimadiallo6831
@ibrahimadiallo6831 11 ай бұрын
Très bon cours et bien structuré. J'avoue que j'ai attendu longtemps pour voir un cours de relativité générale aussi bien structuré et aussi bien présenté sur KZbin. Si seulement vous pouviez mettre à notre disposition des resources pédagogiques( cours et exercices au format pdf) ça serait encore plus formidable. Un grand merci à vous encore une fois.
@mmb6545
@mmb6545 11 ай бұрын
Excellente vidéo et leçon de pédadogie. J'aime beaucoup votre façon de présenter les concepts physiques
@MrMoncom
@MrMoncom 9 ай бұрын
Je crois que ce cours était attendu par beaucoup d'entre nous ! Merci infiniment!
@skuizhopatt5318
@skuizhopatt5318 11 ай бұрын
Bonjour, petite nuance à 1:24:00 (environ) : si un corps de masse nulle a une vitesse infinie, on retombe (encore une fois) sur nos pieds dans le cas non relativiste (1/2 mv²)
@EtienneParizot
@EtienneParizot 11 ай бұрын
En fait, non. Même en physique newtonienne, une vitesse infinie n'a pas de sens. Si un corps a une vitesse infinie, alors il se retrouve à l'autre bout de l'univers en moins d'une seconde, moins d'une microseconde, moins d'une nanoseconde, moins de 10^-23700385290354769359403876987934098064 secondes, etc. Et d'ailleurs, il a forcément TOUJOURS eu cette vitesse, puisqu'il est impossible de faire agir une quelconque force sur lui… puisque sa masse est nulle. Bref, non, vraiment, un corps de masse nulle n'a pas de sens en Physique newtonienne. Avant la théorie de la Relativité restreinte, on pensait qu'il n'y avait pas de limitation fondamentale à une vitesse, c'est-à-dire qu'une vitesse pouvait être aussi grande qu'on voulait. Mais aussi grande que l'on veut ne signifie pas infinie. 😉
@Pegamax
@Pegamax 11 ай бұрын
​@@EtienneParizot Même transfini ? 😅
@skuizhopatt5318
@skuizhopatt5318 11 ай бұрын
@@EtienneParizot l'énergie serait transmise entre deux points de l'espace, le temps serait absolu et la composition des vitesses resterait vraie... Je sais que c'est une pure vue de l'esprit puisque dans la réalité, on mesure une vitesse finie, pas besoin de me le rappeler ;°) En tout cas moins je trouve la construction amusante. (Newton pensais que la lumière était faite de particules, me souviens pas s'il avait une idée de la vitesse ou pas) EDIT : from wikipedia (Théorie corpusculaire de la lumière) :
@skuizhopatt5318
@skuizhopatt5318 11 ай бұрын
Ok, donc vitesse finie pour Newton, mais du coup pan dans la composition des vitesses et tout le reste
@EtienneParizot
@EtienneParizot 11 ай бұрын
​@@skuizhopatt5318 Oui, Newton est contemporain de Rømer, qui détermina la vitesse de la lumière avec une assez grande précision.
@Bruno-B
@Bruno-B 11 ай бұрын
Bonsoir, Le "produit scalaire" des deux quadrivecteurs (à 7'50) c'est plutôt -a1a2+b1b2+c1c2+d1d2. Non ?
@EtienneParizot
@EtienneParizot 11 ай бұрын
Oups. Oui, bien sûr ! Désolé ! J'ai changé de notation en cours de route ! (J'ai écrit le produit scalaire comme si j'avais choisi les coordonnéee (a1,a2,a3,a4) pour le premier vecteur, et (b1,b2,b3,b4) pour le second ! Merci d'avoir relevé l'erreur ! (Il est même étrange que personne n'ait réagi. Sans doute parce que la plupart des étudiants dans la salle connaissait bien le produit minkowskien et a saisi ce à quoi je me référais sans regarder dans le détail, basculant implicitement vers sur cette autre notation…). Merci encore.
@Bruno-B
@Bruno-B 11 ай бұрын
@@EtienneParizot C'est vrai qu'on ne fait pas trop attention, parce qu'on sait ce qu'on attend, mais j'ai eu une seconde ou deux de perplexité (même si j'ai fait deux tours du cours de relativité restreinte, les deux premières années ou vous l'avez fait !). Merci surtout à vous de partager toute cette science. Et merci aussi pour la RG, depuis le temps que je l'attendais ! Sinon, l'espoir d'un petit débriefing pour savoir ce qu'a donné l'expédition "ballons à muons" sur la chaîne secondaire un de ces jours ?
@abinadvd
@abinadvd 11 ай бұрын
J'aime bien ce Monsieur. Il dit discrètement à ses élèves : calmez vous les physiciens. La moitié de votre métier est de faire des maths (comprendre des concepts formels qui permettent le calcul). Ne vous gargarisez pas de suffisance , les matheux comprennent vos idées et parfois les précèdent dans la douleur. Par contre parfois , des idées ne viennent pas d'eux , ils les introduisent dans leurs concepts et ces idées s'avèrent riches. J'ai un exemple peu connu. Début 20 eme , tout le monde pourrissait (surtout ignorait) Boltzmann. Ce mec a dit , il existe une flèche au temps, à savoir certains phénomènes ont une fonction associée croissante de la solution. Les matheux qui regardaient les EDP (équations aux dérivées partielles, style Laplacien ou autre) coinçaient pour trouver existence et unicité de certains problèmes. Ils n'avaient pas l'unicité de la solution. Pis , ils ont cherché des solutions "entropiques" (solutions qui avec une certaine fonction vers R associée au problème est croissante). Bref , ajouter une contrainte à la solution. Ensuite , les matheux ont parfois prouvé l'unicité dans ce cas et permis alors des méthodes de calculs. L'idée c'est Boltzmann qui l'a donnée de façon involontaire. Il a sans doute été moins "pourri" par les matheux que par les physiciens.
@christianthibaut3620
@christianthibaut3620 11 ай бұрын
je suis vos cours qui sont très didactiques. petite question, ( avec référentiel Minkowski) qu'est-ce qui se passe en fonction du temps si à la même position x, 2 corps de même masse m sont projetés avec une vitesse initiale identique mais un un écart delta t dans un champ gravitationnel constant? les masses s'attirent restent au même point x ? Question un peu naïve, mes cours de physique date des années 60 et j'ai travailler dans l'automobile donc....
@AMieuxYRegarder
@AMieuxYRegarder 11 ай бұрын
Top!
@jmariebeguin3084
@jmariebeguin3084 11 ай бұрын
j'ai vu que tu as resorti une vidéo ya peu de temps, c tres cool d'avoir la 2. j'ai la tete farci en ce moment mais il reste une ptite place pour caler ca histoire de garder la forme. chuis impatient, mais pas ce soir :) [edit] apres relecture, ca peut etre pris bizarre. deja, je vais te vouvoyer, et ensuite, je ne connais absolument pas etienne parizot irl et les autres trucs. ceci dit, c'est pas si naze a la relecture :) [reedit] le syndrome du sable mouvant. bien sur que je connais etienne parizot, pas en tant que prof, mais par ses videos youtube. je conseille des excellentes videos sur le sujet de richard taillet (je suis nord ouest, aucun conflit d'interet). toute nouvelle approche est belle a prendre. chuis vraiment impatient mais conscience du ralentissement global de mon cerveau sur le we, du coup, dans la semaine en premiere intention de recomprehension. ceci dit, tu t'en fout et tu t'en fout pas, c'est bizarre un ecran :) [re²edit] d'autant que dans mon souvenir, c'est plutot quantique theorique. ya un truc pour faire un buzz avec guerlain mais bobroff et aspect sont deja sur le coup :)
@zprmscorner1769
@zprmscorner1769 11 ай бұрын
Argh, vous n'avez pas pu changer de tableau... Bon courage rétrospectif.
@fesslerivan603
@fesslerivan603 11 ай бұрын
J’ai pas le sentiment que la notion de courage rétrospectif soit mieux définie que celle de simultanéité, mais chacun fait ce qu’il veut
@Porculoide
@Porculoide 11 ай бұрын
Je crois qu'il y a une confusion entre instantané et simultané
@EtienneParizot
@EtienneParizot 11 ай бұрын
Bonjour. Votre message n'est pas clair. S'agit-il d'une observation générale ? Parlez-vous d'une confusion que vous faites, ou que "les gens" font, ou que je fais moi-même à certains moments ? Vous référez-vous à un passage particulier de la vidéo ? Dans ce cas, lequel ?
@Porculoide
@Porculoide 11 ай бұрын
@@EtienneParizot Ben oui j'ai l'impression que vous pensiez plutôt à " simultané " dans le sens ' ce n'est pas simultané ' ?
@EtienneParizot
@EtienneParizot 11 ай бұрын
@@Porculoide À quel endroit ?
@deberdtolivier9102
@deberdtolivier9102 10 ай бұрын
Bonjour Monsieur Parizot, je suis attentivement vos cours et je me faisais la réflexion suivante sur ces "histoires" de référentiels et de coordonnées sur lesquels vous insistez beaucoup ; n'y aurait-il pas intérêt à bien distinguer les 2 notions : - un référentiel, ou un repère, c'est "ce par rapport à quoi" on mesure des grandeurs physiques (vitesse, accélérations, etc ...) et quelque soit le système de coordonnées choisies : la valeur d'une vitesse n'est pas la même selon par rapport à quel repère on la mesure - un système de coordonnées (pour un référentiel donné), c'est la façon dont on mesure les coordonnées ou les composantes des vecteurs : là, la valeur d'un vecteur vitesse est la même quelque soit le système de coordonnées adopté (la base choisie en fait), pour un repère donné évidemment. J'ai le sentiment que dans le langage en général on a tendance à mélanger les deux ce qui peut induire de la confusion. Est ce que je dis des bêtise là ? Merci !
@EtienneParizot
@EtienneParizot 10 ай бұрын
Bonjour. Attention, vous confondez "repère" et "référentiel", mais je comprends ce que vous voulez dire, et je pense pouvoir vous répondre, car le problème se trouve ailleurs. Si je vous comprends bien, ce que vous appelez système de coordonnées est un système de coordonnées spatiales, au sein d'un référentiel particulier. Mais la variété différentielle dont il est question en Relativité générale (mais aussi en Relativité restreinte !) est l'espace-temps dans son ensemble, et non seulement l'espace. Dans ce cadre, la notion de référentiel soit perd de sa pertinence, soit se ramène à un système de coordonnées particulier dans l'espace-temps. Prenons l'espace-temps de Minkowski (de la Relativité restreinte) pour simplifier. Dans ce cas, choisir un certain référentiel galiléen, ce n'est rien d'autre que choisir une certaine direction de genre temps dans l'espace-temps, qui constitue l'axe du temps associé à ce référentiel. L'espace correspondant est alors simplement le sous-espace de l'espace-temps orthogonal à cet axe temporel. Ainsi, oui, un référentiel galiléen n'est rien d'autres que le choix d'un certain système de coordonnées dans l'espace-temps. Reprenons votre exemple : vous dites que « la valeur d'une vitesse n'est pas la même selon par rapport à quel repère on la mesure ». Là, vous vouliez en fait dire "référentiel", et non repère, mais je comprends. Puis vous dites que dans un référentiel donné, quel que soit le système de coordonnées [sous-entendu d'espace] adopté (au sein de ce référentiel), « la valeur d'un vecteur vitesse est la même ». Mais dans la perspective spatiotemporelle, le vecteur vitesse est un quadri-vecteur (un vecteur à 4D, avec 4 composantes spatio-temporelles) et ce quadri-vecteur vitesse est ce qu'il est : il ne dépend pas du référentiel ! Ses composantes spatiales dépendent bien sûr du référentiel, puisque ce qu'on appelle espace au sein de l'espace-temps dépend du référentiel, mais c'est exactement la même chose que si vous changez de repère (ou de système de coordonnées) au sein d'un référentiel donné : les composantes du vecteur changeront, mais pas le vecteur. Ainsi, vous voyez que ce que vous appelez référentiel n'est autre qu'un choix particulier de repère "cartésien" dans l'espace-temps absolu. Voilà pourquoi il est plus pertinent de parler de système de coordonnées (ou de « carte » sur une variété différentielle) que de référentiel. Ce commentaire répond-il à votre interrogation ?
@deberdtolivier9102
@deberdtolivier9102 10 ай бұрын
Merci pour votre réponse rapide ; je vais essayer de préciser mon interrogation : Oui, le terme repère que j'ai utilisé n'était pas le bon ; donc disons référentiel (au sens corps solide de référence) ; ce que je voulais dire c'est : - d'une part, qu'une vitesse (par exemple) est différente selon le référentiel par rapport auquel on la définit : par exemple, la vitesse d'un voyageur se déplaçant dans un train est différente (en soi) selon que l'on parle de la vitesse par rapport au référentiel-train ou par rapport au référentiel-quai. - d'autre part que, dans chacun de ces référentiels, une autre chose est le système de coordonnées (cartésien, polaire ou autre) que l'on choisit pour écrire les composantes des vecteurs vitesse. Et que parfois on mélange un peu les deux (mais c'est peut être dans ma tête que c'est mélangé :) !) En revanche c'est vrai que mon raisonnement est énoncé dans un contexte purement 3 D spatial et implicitement supposé newtonien et non relativiste. En vous lisant je crois comprendre que c'est là que ça pèche ! Le fait de raisonner dans l'espace-temps absolu 4D et avec des quadrivecteurs fait que seule la notion de coordonnées (ou de cartes) est utile et que la notion de référentiel (par rapport auquel on définissait une vitesse en 3D par exemple) n'est plus pertinente. Is it correct ?
Relativité générale (séance 2b)
1:10:02
Etienne Parizot
Рет қаралды 4,7 М.
Relativité générale (séance 1a)
1:31:51
Etienne Parizot
Рет қаралды 26 М.
Что-что Мурсдей говорит? 💭 #симбочка #симба #мурсдей
00:19
It works #beatbox #tiktok
00:34
BeatboxJCOP
Рет қаралды 41 МЛН
Relativité générale (séance 3a)
39:43
Etienne Parizot
Рет қаралды 4,3 М.
Relativité générale (séance 1b)
1:21:38
Etienne Parizot
Рет қаралды 10 М.
Relativité générale (séance 3b)
1:24:36
Etienne Parizot
Рет қаралды 6 М.
Conférence "La gravitation"
1:35:31
Société Astronomique de France
Рет қаралды 27 М.
Alain Aspect - Le photon onde ou particule ? L’étrangeté quantique mise en lumière
1:33:23
Institut des Hautes Etudes Scientifiques (IHES)
Рет қаралды 532 М.
AUX CONFINS DE L'ESPACE-TEMPS : La théorie d'Einstein mise à l'épreuve
1:31:10
Université de Genève (UNIGE)
Рет қаралды 223 М.
« UNE PETITE HISTOIRE DE LA MASSE DU GRAVITON »
1:23:51
Institut d'Astrophysique de Paris
Рет қаралды 38 М.
Physique pour non spécialistes, 2024, séance 1a
1:17:34
Etienne Parizot
Рет қаралды 22 М.
Что-что Мурсдей говорит? 💭 #симбочка #симба #мурсдей
00:19