Actually, I did this 9 years ago! kzbin.info/www/bejne/Z3iahGRrebuAZs0
@cicik573 жыл бұрын
nice, it is solvable with substitution tanx = t, but this is mutch shorter
@adandap3 жыл бұрын
Alternatively, sin(x) + cos(x) = root(2) sin(x + pi/4) then u = x + pi/4 and it's easy from there.
@cartermikovich13693 жыл бұрын
that was my first thought as well
@baezmarklimuel78713 жыл бұрын
@adandap explain how sin(x) + cos(x) = sqrt(2)sin(x+45)
@adandap3 жыл бұрын
@@baezmarklimuel7871 Sure, sin(x) + cos(x) = sqrt(2) [ sin(x) . 1/sqrt(2) + cos(x) . 1/sqrt(2)] = sqrt(2) [ sin(x) . cos(pi/4) + cos(x) . sin(pi/4)]. The quantity in the square bracket is sin(x + pi/4) because sin(a+b) = sin(a) cos(b) + cos(a) sin(b) and sin(pi/4) = cos(pi/4) = 1/sqrt(2)
@Z7youtube2 жыл бұрын
@@adandap nice! thx for sharing this
@alberteinstein36123 жыл бұрын
You never fail to give me fun math problems to do! :)
@ta_helado3 жыл бұрын
rt
@rogerkearns80943 жыл бұрын
Wouldn't it be nice if I'd ever even think of doing that.
@sourabhdubey75183 жыл бұрын
Great technique, now I will use it in my term end examinations
@hetsmiecht10292 жыл бұрын
0:59 my immediate reaction was "sure it would be nice if we only had to integrate 1, but that's not gonna happen". Then you wrote exactly that on the board :)
@calculus2802 жыл бұрын
Introduce this substitution: x = arctan(u^2). There will be partial fractions but it works out nicely in the end.
@sir.dinosuras48463 жыл бұрын
Just pure gold. Thanks sir for your support. Cheers 🥂.
@محمدمحمد-خ7ف2ب8 ай бұрын
You can multiple and divide by sec ^2 x and make u = tanx then continue with partial fractions
@SeeTv.3 жыл бұрын
An easier integral? integral cos(x) dx is easier
@not_vinkami3 жыл бұрын
But it's not nice b/c it's basically irrelevant
@gurkiratsingh7tha9933 жыл бұрын
Integral constant dx is easier
@AirshipToday3 жыл бұрын
@@gurkiratsingh7tha993 integration of nothing(0) is easier
@hanumangupta6077 ай бұрын
But you might remember it's value
@MohammedAli-ig2nu3 жыл бұрын
Can you investigate Integral of (1+tanh x)/(1+tan x) ? Does it have a solution? And how can one decide if the antiderivative of some expression can be found?
@justinpark9393 жыл бұрын
Had my own way and the antiderivative was x/2 + ...ln|cos(2x)|/4 + ln|sec(2x)+tan(2x)|/4 + c. Saw Mr Steve's answer and found that the trig stuff was equivalent to his trig stuff, after some manipulation. edit: wouldn't it be nice if you were good at finding complicated ways to write 1 or 0. I wish finding creative ways to rewrite the multiplicative and additive identity were my forte.
@FireFly_best_girl3 жыл бұрын
but as I know I can do some thing else ,,, first step : u=tan(x) then du=sec^2(x)dx then dx=du/sec^2(x) so we will have integral of du/u+1(sec(x))^2 ,,,, alternatively u^2=tan^2(x) so u^2=sec^2(x)-1 so (u^2)+1=sec^2(x) so the final form will be integral of du/(u+1)((u^2)+1) then solve it by partial fractions if I am wrong please tell me (:
@anshumanagrawal3463 жыл бұрын
Haha, not me using the t = tan(x/2) substitution without thinking and making this way more complicated than it needs to be
@abdullahimohamedalasow77833 жыл бұрын
It is so fun. every time new method, thanks.
@alextaunton30992 жыл бұрын
When the answer just popped out, I audibly laughed at the brilliant simplicity
@ahmaurya6187 Жыл бұрын
Hay
@ahmaurya6187 Жыл бұрын
India🇮🇳
@Mariosergio612 жыл бұрын
Very ingenious!
@beatrixwashere3 жыл бұрын
thank you for erasing the tiny blue mark at the end
@littlelilly74803 жыл бұрын
Same qn arrived in our previous exam
@mathmancalc77533 жыл бұрын
Wait! You shaved? I thought this was an old video you uploaded to this channel.
@michelecastellani13 жыл бұрын
That's pratically born haber cycle applied to integrals... How fun😂😂😂
@gddanielk84913 жыл бұрын
I like integrals that aren’t hard they’re ok :)
@SimsHacks3 жыл бұрын
Weierstrass sub u=tg(x/2) would work
@Blend333 жыл бұрын
Taking trig; on my way to calc 1, 2, 3
@kushaldey30033 жыл бұрын
Very nice trick.
@yoganandasp20853 жыл бұрын
Bro why can't it be rationalised? 1-tanx then put tanx=t 1-t/1-t^2 then it's easy
@fivestar58553 жыл бұрын
The work of genius god damn :p
@ronaldrosete40863 жыл бұрын
I miss your goatee.
@jagula3 жыл бұрын
This is new video? Did you shave?
@petereziagor46043 жыл бұрын
Old good days
@joaquinlemus433 жыл бұрын
….mind blowing….🤷🏻♂️😱😱😱
@rithwikanand94513 жыл бұрын
Please do integral of sin(x^2).
@trayne51513 жыл бұрын
cos(x^2)*2x Derivative of the trig function with the chain rule for the x^2 on the inside
@deeznuts43333 жыл бұрын
@@trayne5151 integral
@rithwikanand94513 жыл бұрын
@@trayne5151 no that's not correct. If you differentiate cos(x^2).2x you will get 2cos(x^2) - 4x^2.sin(x^2)
@Ayush-yj5qv3 жыл бұрын
@@rithwikanand9451 ya tbh
@xinpingdonohoe39783 жыл бұрын
I'm not certain if this will work, but because e^iz = cos(z) + i sin(z), then sin(z) = Im (e^iz) Therefore, the integral of sin(x^2) dx equals the imaginary part of the integral of e^ix² dx. A u substitution, maybe -u² = ix², might be able to produce something in terms of erf(x) or erfi(x). Take the imaginary part, add a constant and you might have your answer. I don't know that this is correct though. Try it.
@aMartianSpy3 жыл бұрын
wouldnt it be nice if there was no tanx in this integral...
@mcig983 жыл бұрын
wouldn't it be nice if it was just 1/tanx
@bobtivnan3 жыл бұрын
Couldn't we just write the denominator as square root 2 * the sine of x + pi/4