26:38 --I just wrote the simple code instead of using column transformer and to use function transformer on the Fare column. accuracy was improved as you said. Thanks
@tarunmohapatra5734 Жыл бұрын
I think there is a mistake while applying cross-validation on entire datasets because ideally it should be applied to training data. This is to prevent information leakage from the test set into the training process. The purpose of the test set is to simulate unseen data and evaluate the final model's performance. If you perform cross-validation before the train-test split, you may inadvertently use information from the test set leading to an overly optimistic assessment of the model's performance
@narendraparmar1631 Жыл бұрын
Marvelous knowledge Thanks sir for your efforts😀
@jatinnandwani66787 ай бұрын
This was mindblowingly awesome! Thanks Nitish
@acharjyaarijit Жыл бұрын
Sir, u r the best.. u know very think..
@1981Praveer Жыл бұрын
#campux @18:08 min, why did we use mean value. it might inject outliers. I think the median should be better. what's your opinion
@parikshitshahane67999 ай бұрын
One correction: I think square root transformation works good on left skewed data, not square transformation
@dostirathi82542 ай бұрын
i want to ask that is cross-validation used over training data or can apply over the whole x and y
@shantinamuna-r8x9 ай бұрын
so handling skewed or non-linear data mean scaling the data and feed it to the model directly . in addition it is use in EDA or feature engineering and moreover can we use standard scaler or any other scaler for data handling (skewed or non-linear)
@sandipansarkar92112 жыл бұрын
finished watching and coding
@rajsharma-bd3sl3 ай бұрын
When we are applying functional transformer to Age column of the training data , it is getting left skewed and not normally distributed. Is it the same for anyone ?
@ug18802 ай бұрын
Even if we use normal method without pipeline, we need not to change the predict function, ryte ? We just change pkl file....
@akshaychauhan5453 жыл бұрын
Should we remove outliers first or we can remove outliers after using transformer
@bubblecakke29 күн бұрын
remove outliers first
@vishalodyssey8 ай бұрын
IF MY DATASET HAS 10 COLUMN AND FEW OF THEM ARE LEFT SKEWED AND FEW ARE RIGHT SKEWED AND SOME ARE NORMALLY DISTRIBUTED HOW DO WE HANDLE THOSE , DO WE APPLY DIFFERENT DIFFERENT TRANSFORMATION ON THE BASIS OF COLUMN
@shubhamgosain45343 жыл бұрын
Thank you sir
@theanalyst96293 жыл бұрын
Thanks man
@rehanansari81547 ай бұрын
I think nAge column was right skewed than the fare column
@abhisheksen4440 Жыл бұрын
why we do log transformation when we have Standardization ?
@dostirathi82542 ай бұрын
if there is fillna function then why we use simpleimputer function over train and test data
@rohitvishwakarma28712 ай бұрын
even i want to know this
@guljitsodhi61492 жыл бұрын
HI Sir, i started watching your vedio's ,very informative,but i have some errors while using some other similar data, can you help explaining and correcting my doubts?, i woulld really appreciate.Thanks
@mayurnaktode5922 жыл бұрын
@Campusx sir if data is skew or not normally distributed it means we have a outliers correct? For removing outliers we use trimming or capping. And if we use log transform then is it like it will adjust the outliers and convert it into normally distributed?
@agnimitram3402 жыл бұрын
I don't think non normal data means presence of outlier. Like Binomial distribution, Chi square distribution are not normal does this mean they have outliers??
@aaditstudent2 жыл бұрын
even after a converting to a normal distribution you can get rid of the outliers by removing from the 3rd or 4th std deviation
@murumathi43073 жыл бұрын
This transform control than outlayer sir
@muhammadmustafa31583 жыл бұрын
thanks sir !!
@mukteshsingh83703 ай бұрын
Day - 30
@gauravgupta49833 жыл бұрын
Sir log, sd and normalization tenio ka use same hi hota hai kiya? Teenon concept mein ham data ko ek normal range mein lekar aate hai, I am right
@sarbajitde25473 жыл бұрын
Sir, we can use the central limit theorem then why do we use such transformations to convert a pdf to the normal distribution?
@malikahsan66482 жыл бұрын
amazing
@ParthivShah10 ай бұрын
Thank You.
@rkpatel-r5q Жыл бұрын
why without using ML pipeline output [survived=arr[1]] and output of with using ML pipeline [notsurvived=arr[0] are not same ?
@jamalshah36573 ай бұрын
can you provide us the OneNote Notes for 100 days of ML?
@yashjain63722 жыл бұрын
doubt : Sir LR assume residual to be Normally distributed not the data. So, why we suddenly start making features to be ND . if Residual of LR is not normally ditributed that means relationship is not liner and we try to make those column ND which are not linear with Target Variable, This is my understand . Please explain.
@Ganeshkakade4542 жыл бұрын
Hi yash...Nice Question...I had also same question..Yeah we know there is assumption that residual should be normallly dirstibuted but also when u get data as normally distributed in certain algos like LR, logR then model performance gets better as we can reduce heterosedasticity from model...when u data is normally distruibuted model statistial power of compuattation gets increase..hope u got u r answer,,if U knew anything more ..plz feel free to share
@excalibur28892 жыл бұрын
function transformer come under which part of feature engineering ?
@beautyisinmind2163 Жыл бұрын
To make features normally distributed
@parthraghuwanshi2929 Жыл бұрын
@@beautyisinmind2163 does it is method of handling outlier or outlier should be handle differently
@beautyisinmind2163 Жыл бұрын
@@parthraghuwanshi2929 For handling outlier you can use other method, transformation is especially to make feature normal for linear model like LR, LogR, NB etc.
@mansichougule11745 ай бұрын
I'm not getting the coding part, can anyone please suggest me something??
@debjeetmukherjee45912 ай бұрын
Kaha impovement hua cross validation k baad Sir ji samjha nehi
@amritajoshi87297 ай бұрын
sir cross validation aapne entire data me ku laga diya. aise to before and after results sahi nahi aayenge ... :)
@bepositivefoxx22412 жыл бұрын
Sir ye normalisation bhi to same kam krta hai
@beautyisinmind2163 Жыл бұрын
normalization does not guarantee normal
@ajaykushwaha-je6mw3 жыл бұрын
I have a doubt in data preprocessing. First we remove outlier --> Feature scaling --> Gaussian Distribution or remove outlier --> Gaussian Distribution --> Feature scaling kindly help ?
@viratmani70113 жыл бұрын
Second one
@surajmeena67972 жыл бұрын
feature scaling shall be applied at last
@as8401 Жыл бұрын
this project difficult to understand
@MRAgundli6 ай бұрын
done
@depalvveturkar Жыл бұрын
Hello Sir, After applying Function Transformer my X_train shape is changing from (719,2) to (80,7) can you help me why is this happening, my X_test shape is intact. I am following your GitHub but still facing issues. Please help
@depalvveturkar Жыл бұрын
It is resolved
@yujiitadori225 Жыл бұрын
i badly need this answer i have looked few place but i ain't getting the correct answer! Variable transformation( Function and Power Transform ) considered as featured transformation technique or this is another part of feature engineering method but not included in feature transformation ?