Gaussian Integral 12 Ramanujan Way

  Рет қаралды 16,760

Dr Peyam

Dr Peyam

Күн бұрын

Пікірлер: 69
@leonardromano1491
@leonardromano1491 5 жыл бұрын
Isn't the Ramanujan Formula kinda redundand as you LITERALLY get the definition of the Gamma function from this substitution... However I saw the formula for the first time and already like it!
@Debg91
@Debg91 5 жыл бұрын
Great series, but I'm still not convinced the Gaussian integral is √π… Just kidding! This is what I like the most about math: you can arrive at the same result from many different ways, which shows how beautifully consistent it is! I'd say my favourite way is 11: the complex way. But this one is also awesome. Ramanujan is my favourite mathematician in terms of originality. I'm hopping there will be more series like this. My suggestion: different regularization methods for divergent series!
@magnetonerd4553
@magnetonerd4553 5 жыл бұрын
This is probably the most beautiful method to show this identity that I have seen. Thank you for the demonstration.
@irishkqings
@irishkqings 9 ай бұрын
After watching this full series I realized that your Full Lecture presents, Math discussion 90% + 10% Comedy act😅= 100% That's why I never get bored while watching. I wish you make more videos again. ❤❤❤
@bouteilledargile
@bouteilledargile 5 жыл бұрын
~series ends~ top 10 saddest anime moments
@abdulalhazred5924
@abdulalhazred5924 5 жыл бұрын
definitely needs a second season
@eliasarguello9961
@eliasarguello9961 5 жыл бұрын
So cool! I absolutely loved those series! My favorite method had to be the complex analysis one (because complex analysis is truly the best) but this one also has to be one of my favorites! What a great job ❤️
@AKSHATAHUJA
@AKSHATAHUJA 5 жыл бұрын
Proud to be indian And Salute to Sir Ramanujan
@jesusalej1
@jesusalej1 4 жыл бұрын
India and its neighbours... the best education in the world.
@jesusalej1
@jesusalej1 3 жыл бұрын
@@aashsyed1277 some people doesnt believe in god but arabic i give you that my friend.
@БогданЛисянський
@БогданЛисянський 5 жыл бұрын
Thank you Dr. Peyam for all your great videos. I'm going to write math olympiad tomorrow and I know that things, I learnt from your videos will really help me.
@soutriksarangi5580
@soutriksarangi5580 5 жыл бұрын
Богдан Лисянский which olympiad are u gonna write?....just curious cuz I am also gonna write Team Selection Test for IMO in a few days
@БогданЛисянський
@БогданЛисянський 5 жыл бұрын
This is olympiad for getting a little bit more points on my entrance exams to college. P.S. I decided to study math in college because of you and bprb
@rome8726
@rome8726 5 жыл бұрын
I love Ramanujan.
@sharathgowtham2157
@sharathgowtham2157 4 жыл бұрын
Ramazhunuzhan
@frozenmoon998
@frozenmoon998 5 жыл бұрын
Finally! The Ramanujan way
@Czeckie
@Czeckie 5 жыл бұрын
nice cliffhanger for the second season, where we gonna explore Mellin transform and other integral transforms
@neilgerace355
@neilgerace355 5 жыл бұрын
Congratulations on getting to the end yourself :) this was very informative and even fun along the way
@SmileyHuN
@SmileyHuN 5 жыл бұрын
Mellin transform is so badass
@thomasfritz8174
@thomasfritz8174 2 жыл бұрын
Well, \phi might be one for integer arguments, but how do we know that it is also one for all other values as $s$ and 1/2?
@yrcmurthy8323
@yrcmurthy8323 5 жыл бұрын
He is the next big mathematician, his favourite is Gaussian Integral. His future name "Dr. Pegauss"
@yrcmurthy8323
@yrcmurthy8323 5 жыл бұрын
Thanks for heart sir
@jesusalej1
@jesusalej1 4 жыл бұрын
Full genius. Greetings from Argentina.
@jacoboribilik3253
@jacoboribilik3253 5 жыл бұрын
At school we approximate the gaussian integral with a triangle. Our predictions are terrible but at least probabilities lie within 0 and 1.
@MilanStojanovic9
@MilanStojanovic9 5 жыл бұрын
i dont know why but i never imagined ramanujan doing calculus. it seems to mechaniclak for his imagination and creativity
@jayamitra4656
@jayamitra4656 5 жыл бұрын
Damn... No more Gaussian integrals.... What are we supposed to do with our lives now? 😂🤣😂🤣
@neilgerace355
@neilgerace355 5 жыл бұрын
Linear algebra!
@Gamma_Digamma
@Gamma_Digamma 5 жыл бұрын
Topology
@jesusalej1
@jesusalej1 4 жыл бұрын
Musician? Perhaps...
@PeterBarnes2
@PeterBarnes2 5 жыл бұрын
I didn't know about the Mellin transform, before. I tried Ramanujan's Master theorem to get an alternative definition of the 'Taylor Transform' I made up before, but that didn't seem to work when I applied it to e^(x^p) . On slightly different work, I think that you could define a function as a series of exponentials of monomials, though I don't know if it's completely correct: f(x) = {sum n=0 to inf. of} F[ Γ(z+1) * T[f](z) ](n) * e^x^n where F[g](z) is the Fourier transform of 'g,' and T[g](z) = (D^z)[g](0) / Γ(z+1) (D^z) is the complex fractional-derivative operator for the zth derivative. (In this case, defining T with 1/Γ(z+1) is redundant, but I use the same definition for other work where it occasionally isn't redundant.) It might be the case that the correct inverse transform here is the improper integral from -inf. to inf. instead, but that can't be known without finding the Taylor Transform of e^x^p for all p and z. I do know that something like this is possible, because you can trivially define the Taylor Transform of e^x^n for z on the integers, and it's periodic to n.
@fgdgjgjhc
@fgdgjgjhc 5 жыл бұрын
I honestly don't get this. It all seems to depend heavily on your choice of Phi, and I cannot see, why this is the only valid choice. If I instead choose Phi(n)=cos(2 pi n), then I still get the series expansion for e^(-x), because this Phi is 1 if n is a whole number. However, then for the Mellin transform, I get Gamma(s)cos(-2 pi s). If I plug in 1/2 into this, I get zero. So why does your choice of Phi give the correct result and mine doesn't? Is this similar trickery to the sum of all numbers being equal to -1/12?
@CousinoMacul
@CousinoMacul 5 жыл бұрын
Thank you for this series.
@yaaryany
@yaaryany 5 жыл бұрын
👍👍👍 Keep up the good work!
@aliali.m4841
@aliali.m4841 5 жыл бұрын
great!!! Dr peyam
@was2zur-holle
@was2zur-holle 7 ай бұрын
He peyam ,Plz give me the link which you solved this integral I want it integration of ln(ln(1/x))/(1-x+x²)
@mounirhayani3059
@mounirhayani3059 4 жыл бұрын
It's amazing that you spent 6 minutes to show that Gamma (1/2) is the integral of x^(-1/2)exp(-x) (which is the definition of Gamma) 😂😂
@cbbuntz
@cbbuntz 3 жыл бұрын
Oh... wait. That's what the Mellin transform does?!?! Okay, that is useful. I always suspected there was some kind of relationship between the gaussian integral and the fact that gamma(1/2) is sqrt(pi).
@felicsmoses1771
@felicsmoses1771 3 жыл бұрын
I am proud that I live in the district (City) adjacent to Ramanujan's native district (City) just 32 miles (50 km) away
@yeahyeah54
@yeahyeah54 5 жыл бұрын
Where is the dx on the integral???
@shanmugasundaram9688
@shanmugasundaram9688 5 жыл бұрын
While applying Ramanujan's formula you have left unexplained the term pi(-s) in the end.Is it Euler's pi function?
@Pterry23real
@Pterry23real 5 жыл бұрын
So now the general form ;) It looks like that the integral from 0 to infinity of a^(-x²) is 1/2 sqrt(pi/ln(a)). Furthermore it also looks like the integral from 0 to inf of a^(-x^b) dx = Γ(b+1/b)/ln(a)^(1/b). It looks like a and b has to have some constraints, but what do I know xD I think wolfram alpha uses the ramanujan way to calculate these kind of general gaussian integrals.
@aadfg0
@aadfg0 5 жыл бұрын
I thought the Ramanujan way was to just write down the answer without any explanation.
@drpeyam
@drpeyam 5 жыл бұрын
Hahaha
@darkseid856
@darkseid856 5 жыл бұрын
Lol. No but seriously , he did proved some of his theorems / formulas. But sadly he died at a young age . :(
@rishinandha_vanchi
@rishinandha_vanchi 5 жыл бұрын
what about trial and error being the 13th method?
@mohamedabdelkareem9443
@mohamedabdelkareem9443 2 жыл бұрын
this Fi(n) in the number theory ?
@shandyverdyo7688
@shandyverdyo7688 5 жыл бұрын
Huahahahaha! Finally. The last of Gaussian Integral.
@chandankar5032
@chandankar5032 5 жыл бұрын
If someone mail you another elegant way to compute gaussian integral,then will you make video on that?
@drpeyam
@drpeyam 5 жыл бұрын
Sure, I can look into that, although it’s not guaranteed :)
@sofianeafra7023
@sofianeafra7023 5 жыл бұрын
Dr peyam does ln(0) exist in complexe analysis ?
@drpeyam
@drpeyam 5 жыл бұрын
No, not even in complex analysis
@sofianeafra7023
@sofianeafra7023 5 жыл бұрын
Dr Peyam but when we calcul the integral of tan(x) from 0 to π/2 we are obliged to calcul -ln(|cos(x)|) and x equals to π/2 and cos(π/2) is 0 and ln(0) is undifened ?
@drpeyam
@drpeyam 5 жыл бұрын
It’s an improper integral, you’re doing a limit as t goes to 0 of ln(t)
@sofianeafra7023
@sofianeafra7023 5 жыл бұрын
Dr Peyam i suggest that -ln(|Cos(x)|) equals to -ln(0) and we know that e^ix = cos(x) + i sin(x) so we have e^i(π/2) = cos(π/2) + i sin(π/2) and by calculing we will find e^i(π/2) - i = 0 which means that is equal to cos(π/2) and we substitute that formula to get e^i(π/2)=i and entering -ln function to back to our equation so we get -ln(e^i(π/2)=-ln(i) and finally we calcul to get -i(π/2) = -ln(i) by multiplying both sides by -1 we get i(π/2)=ln(i) and as a conclusion we get the integral of tan(x) from 0 to π/2 equals to ln(i) 🔥 how cool is that but is that true ? and thank you 🙏
@gellogellogello2915
@gellogellogello2915 3 жыл бұрын
Eulerian integrals!
@juandiegoparales9379
@juandiegoparales9379 11 ай бұрын
Dr Peyam, after watching the whole series, I can confidently say that you missed my method 😎
@drpeyam
@drpeyam 11 ай бұрын
Great 👍
@Rundas69420
@Rundas69420 5 жыл бұрын
If we make a meme out of this, I bet it would be something like this: Who would win: An integral which got at least 12 videos on this channel, or 1 indian boi?
@drpeyam
@drpeyam 5 жыл бұрын
Hahaha, I’m not Indian though! 😂
@Rundas69420
@Rundas69420 5 жыл бұрын
@@drpeyam I meant Ramanujan, but an interesting thought indeed xD
@drpeyam
@drpeyam 5 жыл бұрын
Oh yeah, just realized that 😂😂😂
@balajidodda7701
@balajidodda7701 5 жыл бұрын
I did it using double integrals.
@drpeyam
@drpeyam 5 жыл бұрын
Check out the playlist
@PraneshPyaraShrestha
@PraneshPyaraShrestha 4 жыл бұрын
Wooah!!!
@ritesharora6032
@ritesharora6032 5 жыл бұрын
Nice accent. Where are you from
@drpeyam
@drpeyam 5 жыл бұрын
Originally from Iran but grew up in Austria, went to a French school, and lived 12 years in California
@PaoloACostantino
@PaoloACostantino 7 ай бұрын
ouroboro
@hajsaifi3842
@hajsaifi3842 2 жыл бұрын
Bêta mieux
how Laplace solved the Gaussian integral
15:01
blackpenredpen
Рет қаралды 764 М.
Vardi Integral
31:55
Dr Peyam
Рет қаралды 15 М.
Tuna 🍣 ​⁠@patrickzeinali ​⁠@ChefRush
00:48
albert_cancook
Рет қаралды 148 МЛН
Support each other🤝
00:31
ISSEI / いっせい
Рет қаралды 81 МЛН
Dini's magical integral
16:57
Michael Penn
Рет қаралды 16 М.
Can we have negative factorial?
19:44
blackpenredpen
Рет қаралды 317 М.
How to use the error function for some tough integral
16:20
Prime Newtons
Рет қаралды 22 М.
A different approach to the Gaussian integral
10:48
Maths 505
Рет қаралды 12 М.
Gaussian Integral [Int{e^-x^2} from -inf to inf]
14:03
Prime Newtons
Рет қаралды 21 М.
Imaginary derivative of x
22:48
Dr Peyam
Рет қаралды 106 М.
Ramanujan Integral
13:04
Dr Peyam
Рет қаралды 28 М.
Learn about a powerful integration trick and a nice identity.
14:35
can you guess the tricks for this integral??
8:37
Michael Penn
Рет қаралды 14 М.
Gaussian Integral
10:03
Dr Peyam
Рет қаралды 9 М.
Tuna 🍣 ​⁠@patrickzeinali ​⁠@ChefRush
00:48
albert_cancook
Рет қаралды 148 МЛН