Progression and Series | JEE Maths Videos | Ghanshyam Tewani | Cengage

  Рет қаралды 30,732

Ghanshyam Tewani JEE Maths Video Lectures

Ghanshyam Tewani JEE Maths Video Lectures

Күн бұрын

Пікірлер: 75
@jeeaspirant2024__
@jeeaspirant2024__ Жыл бұрын
44 minutes of pure teaching . A passionate teacher ♥️♥️ What an amazing teacher you are I can't explain in words
@sirajgupta7031
@sirajgupta7031 6 жыл бұрын
SIR U ARE GREAT IS CAN U PLS GIVE LAST VIDEO IN WHICH FEW QUESTIONS TOUCHING ENTIRE MATHS ARE THERE
@sridharbajpai420
@sridharbajpai420 6 жыл бұрын
when LEGEND comes to earth to teach u i was in need of all these concept but never find it anywhere on earth
@amrutmadje9991
@amrutmadje9991 2 жыл бұрын
LEGEND of Mathematics!!! 👍🏻
@dstsirnitw
@dstsirnitw 6 жыл бұрын
Excellent job sir you are great
@uddipan_1842
@uddipan_1842 4 жыл бұрын
You are the best teacher of mathematics
@aakash4924
@aakash4924 6 жыл бұрын
Sir pls make 3 videos A.M G.M inequality Trigo+Inverse trigo & last is on theory of equation
@ballibhatia4481
@ballibhatia4481 4 жыл бұрын
I dont no why these kind of videos get only few likes and views as they are of advance level which we are able to see free only because of this great person
@mohitsawane6241
@mohitsawane6241 6 жыл бұрын
he is blessing for all of us
@atharvsaxena7218
@atharvsaxena7218 6 жыл бұрын
Always in the heart G.Tewani !!!
@kartikeya7860
@kartikeya7860 6 жыл бұрын
Sir you make mathematics so easy!!! Thanks a lot!!!
@vaibhavkumar5096
@vaibhavkumar5096 5 жыл бұрын
Mza aa gaya video dekh ke . Questions krne ki shi approach pta lg gai . Thanks a lot sir
@prakashchandra4427
@prakashchandra4427 6 жыл бұрын
Saandaar , bejhor ,laajawab
@varadthube4851
@varadthube4851 3 жыл бұрын
Easy trick to solve first question is to know that the sum of first 'n' odd integers is n^2. So the given que directly represents (sum of first 57 odd integers)-(sum of first 13 odd integers) and que is finished....
@padmakant1
@padmakant1 6 жыл бұрын
Sir, sigma wala concept bahut achha tha...thank you..
@prjadhav7783
@prjadhav7783 5 жыл бұрын
theme questions , very helpful :) thanks a lot .
@dineshratnani5358
@dineshratnani5358 5 жыл бұрын
Wow awesome application of inclusion exclusion
@ShikharGoswami
@ShikharGoswami 6 жыл бұрын
And also composite functions and their differentiation.. Find it very hard..h(g(gx)) type
@dubeyd5384
@dubeyd5384 5 жыл бұрын
Sir aapki jee mains aur advanced books me kya difference hai, kya mains wali books aur advanced wali books ki theory aur questions me difference hai, kuchch samajh nhi aa rha, reply dena jarur sir
@tanushbidkar8724
@tanushbidkar8724 4 жыл бұрын
Hello sir one of the great video ever I have watched I am ur follower of maths sir i watch ur all lectures on youtube, your videos site and cengage videos also. I am understand whole jee maths from u easily . Only one doubt in this chapter that is v(r) -v(r-1) method is sufficient Or ur t1, t2 method which u substituted as tr is needed
@manojrajguru8852
@manojrajguru8852 5 жыл бұрын
Sir would you please suggest me about your online setup... I am impressed too much
@8796205190
@8796205190 4 жыл бұрын
Sir, You are great, when come to teaching. Please upload more videos on CONIC SECTIONS.
@madanmotre
@madanmotre 4 жыл бұрын
sir your videos are totally amazing
@rameshpandey5637
@rameshpandey5637 6 жыл бұрын
Sir aaj kis topic par video aeyega.calculus ke mixed concepts par bana sakte hai kya.
@ankurupadhyay280
@ankurupadhyay280 6 жыл бұрын
Thank you sir
@tushargoyaliit
@tushargoyaliit 6 жыл бұрын
At 18:30 I usually solve like Agar ham sab brackets ki maximum power se multiply kare to 1275 So hame ek degree kam karni hai . It could be done by selecting constant from (x+1) =1; or by selecting linear from (x-2)^2 which is 4 ; or quadratic term from (x+3)^3 which is equal to 9(3C1×x^2×3^1) .... Similarly 4C1×4 .... ... Aapke method me je problem aa rahi hai ke ham 3 vaar(x-3) ko kyu bahar rakh rahe hai ?
@gtimeducation
@gtimeducation 6 жыл бұрын
To understand my method you can follow this logic also. Degree of polynomial is 1275. We are looking for coefficient of x^1274. So, sum of the zeros will be equal to (-co-efficient of x^1274/ coefficient x^1275). So, coefficient of x^1274 = -(sum of zeroes) = - (-1 + 2 + 2 - 3 - 3+ 4 + 4 + 4 + 4 .....) etc.
@tushargoyaliit
@tushargoyaliit 6 жыл бұрын
Really outstanding sir awesome Very very nice way
@tushargoyaliit
@tushargoyaliit 6 жыл бұрын
This is best method that could be for this que
@sheebapratap2555
@sheebapratap2555 6 жыл бұрын
God in disguise..... #respect🙏🙏
@rajdeepsarkar5721
@rajdeepsarkar5721 6 жыл бұрын
Trigonometry pls 😊
@ritehkumarsingh1499
@ritehkumarsingh1499 6 жыл бұрын
I not = j not= k wale question me jab tino equal ho jaye to wo wala substract nahi kiye hai
@pathipakabanesh4659
@pathipakabanesh4659 4 жыл бұрын
fantastic class sir , sir pls post more videos on every topic which touch overall concept
@rajatparab8116
@rajatparab8116 6 жыл бұрын
Thankyou sir You are legend
@DilkhushKumar-ok2pp
@DilkhushKumar-ok2pp 6 жыл бұрын
Thanks so much sir.
@snipergranola6359
@snipergranola6359 5 жыл бұрын
Thanx sir
@VIKASVERMA-nk8uw
@VIKASVERMA-nk8uw 3 жыл бұрын
Great
@ShikharGoswami
@ShikharGoswami 6 жыл бұрын
Sir please cramers rule and system of equations
@radheygupta220
@radheygupta220 6 жыл бұрын
hats off to you sir for your dedication towards us
@xenngaming1973
@xenngaming1973 6 жыл бұрын
Sir can you explain domain of composite functions ?
@RajeshKumar-go6st
@RajeshKumar-go6st 6 жыл бұрын
Sir vo i and j ko jab equal kiya to uske subtract kaise kiya Matlab subtract krne vaala expression kaise
@gtimeducation
@gtimeducation 6 жыл бұрын
I think you are asking in question where double sigma is there. It is simple, when i = j, we have i x j = i^2, and there is no need of sigma for j variable only i variable will do. If it is a doubt of triple sigma question then ask it again.
@ritehkumarsingh1499
@ritehkumarsingh1499 6 жыл бұрын
Thanks a lot sir
@utsavdesai5885
@utsavdesai5885 4 жыл бұрын
there is an error at 17:45 the sum should be (1^1)-(2^2)+(3^3)-(4^4).....
@abueleas22
@abueleas22 3 жыл бұрын
I think you are wrong
@mahimaarora3292
@mahimaarora3292 6 жыл бұрын
Sir how to think in such a way that we can split the nth terms in T (r+1) -T (r)
@gtimeducation
@gtimeducation 6 жыл бұрын
I sequence and series there is one section of series of this type in which we split the general term in T(r + 1) - T(r). It stars with elementary partial fraction. It requires practice of such questions then by some logical thinking you can split. If you are reading cengage books, you will find this topic at the end the theory just before subjective questions. One thing is clear in such questions we have to split the term otherwise there is no way to get this sum. Now keep thinking that splitting must benefit you like when u r splitting and write the terms by putting the values of r terms must be cancelled in some pattern. If it is not cancelling u rework.
@tany1291
@tany1291 4 жыл бұрын
@@gtimeducation Thank you sir.👍🏻👍🏻
@abdevilliers7744
@abdevilliers7744 5 жыл бұрын
Question solved between 29:00 and 34:00 the last term must have a 1 in multiplication why there is a 2
@ashishjain48578
@ashishjain48578 3 жыл бұрын
waha pe sir ne subtract karne ke bad wali jo term likhi wo shayad galat likhi he
@studyalways593
@studyalways593 6 жыл бұрын
Sir in the first question , of 57²-13², there can be another series also possible,how can we find that series , please give some guidances.
@tushargoyaliit
@tushargoyaliit 6 жыл бұрын
Sir wo to pta lag gya ke konse case minus krne hai but kaise karne hai Like i ;j;k equal krne pe aapne 3 sigma ki jagah ek hi sigma likha Vo kaise at 32:0 k and j ko equal krne par jab subtract kr rahe hai to k ke saath vaala sigma gayab hi jo gya? Thoda please bta do i have confusion
@gtimeducation
@gtimeducation 6 жыл бұрын
We want sum when i, j and k are distinct. So we first find sigma when i, j and k are independent which is equal to (sigma of 1 for i)(sigma of 1 for j) (sigma of 1 for k). In this sum there will be terms when i = j (k may be equal to this or not), j = k( i may be equal to this or not) and i = k (j may be equal to this or not). Now all these sums will be equal. when u make i = j or j = k or i = k, we get the same sum. So, i am subtracting sum when i = j three times (one for each i = j, j = k, i = k). Now doing this we have subtracted the case when i = j = k more than required times. So we are adding the sum when i = j = k two times to balance. If still doubt dont hesitate ask again.
@gtimeducation
@gtimeducation 6 жыл бұрын
This is for triple sigma question. We want sum when i, j and k are distinct. So we first find sigma when i, j and k are independent which is equal to (sigma of 1 for i)(sigma of 1 for j) (sigma of 1 for k). In this sum there will be terms when i = j (k may be equal to this or not), j = k( i may be equal to this or not) and i = k (j may be equal to this or not). Now all these sums will be equal. when u make i = j or j = k or i = k, we get the same sum. So, i am subtracting sum when i = j three times (one for each i = j, j = k, i = k). Now doing this we have subtracted the case when i = j = k more than required times. So we are adding the sum when i = j = k two times to balance. If still doubt dont hesitate ask again.
@tushargoyaliit
@tushargoyaliit 6 жыл бұрын
Sir i had clearity about this what u replied . But i wanted to know Jo expression subtract karte time likha vo kaise bana ; usme sirf 2 sigma hai I m clear about which cases to subtract or add . But i just wanted to know jab hamne k=j maan ke subtract kiya tab vaha pe only 2 sigma hai kya k=j karne c ham either k or either j only ek sigma hi rakhe. . ( Kaise) Je doubt hau
@chhayanchoidhury1747
@chhayanchoidhury1747 Жыл бұрын
Bhaiya ap iit pouch Gaye
@parmitkumar8065
@parmitkumar8065 5 жыл бұрын
Sir please components and divinendo bataiye
@ananyav3395
@ananyav3395 4 жыл бұрын
Thank you sir!!
@yt.abhijeetsingh
@yt.abhijeetsingh 6 жыл бұрын
sir is some part of this video from your previous progression and series lesson???
@gtimeducation
@gtimeducation 6 жыл бұрын
No, this is freshly recorded.
@roshansphotography4140
@roshansphotography4140 6 жыл бұрын
check out binomial, it is linked
@yt.abhijeetsingh
@yt.abhijeetsingh 6 жыл бұрын
Roshan's Photography i also remebered 😅
@hrishikeshaddagatla4789
@hrishikeshaddagatla4789 5 жыл бұрын
Sir can you give me the solution of arithmetic mean of 2sin2,4sin4,6sin6,.....180sin180degree
@hrishikeshaddagatla4789
@hrishikeshaddagatla4789 5 жыл бұрын
@@gtimeducation Thank you sir
@carryminnnnati
@carryminnnnati 4 ай бұрын
3:42
@roshansphotography4140
@roshansphotography4140 6 жыл бұрын
sir why previous year questions, i did it already
@Aalekhsingh1057
@Aalekhsingh1057 2 ай бұрын
Aap kya glass k upar likhte ho 🤔🤔
@carryminnnnati
@carryminnnnati 3 ай бұрын
25:00 to 36:00 hardest minutes of my life
@ranasvoice554
@ranasvoice554 3 жыл бұрын
👍👍👍👍👍👍👍
@ranbirpalsingh2245
@ranbirpalsingh2245 5 жыл бұрын
Sorry sir but there is some error in qno. 4 u have solved as u have solved the x+1/x by using am gm inequality and on applying the equality conditions we are getting absurd result then how can be accept am gm we need to find its min. Valurle by some other method
@abueleas22
@abueleas22 3 жыл бұрын
You're wrong....the method is absolutely correct
@narayanastudent9392
@narayanastudent9392 2 жыл бұрын
omg
@arunasharma6614
@arunasharma6614 4 жыл бұрын
Sir hum gareeb log ke liye aap sare upload Kar do pl. I'm
@rubalsinghdhaliwal1360
@rubalsinghdhaliwal1360 6 жыл бұрын
Thank you sir
Graphs in calculus | JEE Maths Videos | Ghanshyam Tewani | Cengage
30:47
Ghanshyam Tewani JEE Maths Video Lectures
Рет қаралды 58 М.
Progression and Series | JEE Maths lectures by Ghanshyam Tewani | Cengage Learning
36:30
Ghanshyam Tewani JEE Maths Video Lectures
Рет қаралды 18 М.
Colorful Pasta Painting for Fun Times! 🍝 🎨
00:29
La La Learn
Рет қаралды 308 МЛН
У вас там какие таланты ?😂
00:19
Карина Хафизова
Рет қаралды 19 МЛН
MY HEIGHT vs MrBEAST CREW 🙈📏
00:22
Celine Dept
Рет қаралды 107 МЛН
Probability | JEE Maths Videos | Ghanshyam Tewani | Cengage
44:28
Ghanshyam Tewani JEE Maths Video Lectures
Рет қаралды 38 М.
Vectors | JEE Maths Videos | Ghanshyam Tewani | Cengage
36:03
Ghanshyam Tewani JEE Maths Video Lectures
Рет қаралды 28 М.
Theory of Equations | JEE Maths Videos | Ghanshyam Tewani | Cengage
50:38
Ghanshyam Tewani JEE Maths Video Lectures
Рет қаралды 66 М.
Permutation & Combination | JEE Maths Videos | Ghanshyam Tewani | Cengage
36:28
Ghanshyam Tewani JEE Maths Video Lectures
Рет қаралды 27 М.
Stop Trying To Understand
10:43
The Math Sorcerer
Рет қаралды 519 М.
Geometry with Complex Numbers | JEE Maths Videos | Ghanshyam Tewani | Cengage
38:36
Ghanshyam Tewani JEE Maths Video Lectures
Рет қаралды 31 М.
JEE 2019 Revision | Applications of derivative | JEE Maths by Ghanshyam Tewani | Cengage
31:57
Ghanshyam Tewani JEE Maths Video Lectures
Рет қаралды 22 М.
Calculus | Inequalities using concavity of the curve | JEE Maths Videos | Ghanshyam Tewani | Cemgage
40:08
Ghanshyam Tewani JEE Maths Video Lectures
Рет қаралды 15 М.
Mathematics | Complex Number | Polar Form | Algebra | JEE Maths | Ghanshyam Tewani | Cengage
29:34
Ghanshyam Tewani JEE Maths Video Lectures
Рет қаралды 7 М.
Geometry with Complex Numbers | JEE Maths Videos | Ghanshyam Tewani | Cengage
37:31
Ghanshyam Tewani JEE Maths Video Lectures
Рет қаралды 80 М.
Colorful Pasta Painting for Fun Times! 🍝 🎨
00:29
La La Learn
Рет қаралды 308 МЛН