Help.. find the least k so the given quadratic equation has real solutions Reddit A-level maths

  Рет қаралды 5,302

bprp math basics

bprp math basics

Күн бұрын

Пікірлер: 13
@ProactiveYellow
@ProactiveYellow Ай бұрын
We want the least value of k to give real roots to [equation]. 1. Notice the LHS is a perfect square, so (x-k)²=x+3 2. Square rooting both sides would be nasty, so let's add and subtract k to get (x-k)²=(x-k)+(3+k) 3. Move everything over to one side to get the quadratic in (x-k) of (x-k)²-(x-k)-(3+k)=0 4. The roots are real if, and only if, the discriminant of this quadratic is non-negative, that is 1-4(1)(-3-k)≥0 5. Distributing through and simplifying we get 13+4k≥0, or 4k≥-13. 6. Fully isolating k gives us that k≥-13/4, thus to have real roots, k must be -13/4 at minimum, and to have two DISTINCT real roots, k may be any value greater than -13/4. 7. And that's a good place to stop.
@x81shreyasdhoke93
@x81shreyasdhoke93 Ай бұрын
Yo cheers!! Encountering these questions make me think of wavy curve method. Would love to see you make a video on that!! (Not for this one tho,this one's easy)
@Engy_Wuck
@Engy_Wuck Ай бұрын
what is the minimum value for two real solutions? -13/4+ε?
@Taric25
@Taric25 Ай бұрын
Yes
@ll-lw8vn
@ll-lw8vn 14 күн бұрын
it would just be k>-13/4 instead k>= -13/4
@anonymouscheesepie3768
@anonymouscheesepie3768 Ай бұрын
x^2 - (2k + 1)x + k^2 - 3 = 0 b^2 - 4ac = 0 (2k + 1)^2 - 4(k^2 - 3) = 0 4k^2 + 4k + 1 - 4k^2 + 12 = 0 4k + 13 = 0 k = -13/4
@marksandsmith6778
@marksandsmith6778 Ай бұрын
Yes. STRICT inequality for real rootS
@quigonkenny
@quigonkenny Ай бұрын
x² - 2kx + k² = 3 + x (x-k)² = 3 + x u² = 3 + (u+k) --- u = x-k u² - u - (3+k) = 0 u² - u - m = 0 --- m = 3+k u = [-1±√((-1)²-4(1)(-m))]/2(1) u = -1/2 ± √(4m+1)/2 4m+1 ≥ 0 4m ≥ -1 m ≥ -1/4 (3+k) ≥ -1/4 k ≥ -1/4 - 3 k ≥ -13/4 kₘᵢₙ= -13/4
@Nothingx303
@Nothingx303 Ай бұрын
An ordinary candy 🍬 flavor math
@m.h.6470
@m.h.6470 Ай бұрын
Solution: x² - 2kx + k² = x + 3 |-x -3 x² - 2kx - x + k² - 3 = 0 x² - (2k + 1)x + (k² - 3) = 0 x = ((2k + 1) ± √( (2k + 1)² - 4(k² - 3))) / 2 x = k + (1 ± √(4k² + 4k + 1 - 4k² + 12)) / 2 x = k + (1 ± √(4k + 13)) / 2 So as long as we have 4k ≥ -13 or k ≥ -13/4, we get real solutions This is also the only point, where x has only one solution: x = -13/4 + (1 ± √(4 * -13/4 + 13)) / 2 x = -13/4 + (1 ± √(-13 + 13)) / 2 x = -13/4 + (1 ± √0) / 2 x = -13/4 + 1/2 x = -13/4 + 2/4 x = -11/4
@creamyscroll2485
@creamyscroll2485 Ай бұрын
meh, that was easy af, not sure why people don't just straight up annihilate the problem with the quadratic formula, makes the damn thing a cake walk really
@milesrahn6093
@milesrahn6093 Ай бұрын
most don’t know how to set up the problem or what exactly they need to do. when someone tells you step-by-step what you need to do in a KZbin video, of course you’re gonna look at it and think it’s easy.
@sidharthpatra4751
@sidharthpatra4751 Ай бұрын
​@@milesrahn6093This problem is very easy for anyone who knows solving quadratic equations either using formula or completing squares. That person will directly check discriminant and solve the problem. But for one who doesn't know solving roots , it will take time
My first A-level math exam question
6:20
bprp math basics
Рет қаралды 179 М.
HELP!!!
00:46
Natan por Aí
Рет қаралды 70 МЛН
Motorbike Smashes Into Porsche! 😱
00:15
Caters Clips
Рет қаралды 23 МЛН
Walking on LEGO Be Like... #shorts #mingweirocks
00:41
mingweirocks
Рет қаралды 7 МЛН
Car Bubble vs Lamborghini
00:33
Stokes Twins
Рет қаралды 44 МЛН
Factoring Quadratics WITHOUT Guessing Product & Sum
20:01
JensenMath
Рет қаралды 97 М.
Why there are no 3D complex numbers
15:21
Deeper Science
Рет қаралды 81 М.
solving equations but they get increasingly awesome
10:44
blackpenredpen
Рет қаралды 1,1 МЛН
Solving x^5=1
9:49
blackpenredpen
Рет қаралды 144 М.
A math GENIUS taught me how to LEARN ANYTHING in 3 months (it's easy)
8:52
Python Programmer
Рет қаралды 895 М.
Solving x^4=1
4:56
bprp math basics
Рет қаралды 90 М.
Factor ANY Quadratic Equation Without Guessing | Outlier.org
14:02
HELP!!!
00:46
Natan por Aí
Рет қаралды 70 МЛН