Solving x^4=1

  Рет қаралды 90,731

bprp math basics

bprp math basics

Күн бұрын

Пікірлер: 203
@bprpmathbasics
@bprpmathbasics Ай бұрын
2nd way: 3:35
@hassanawdi3793
@hassanawdi3793 Ай бұрын
Its so hard for me to solve 😅
@sanjukumari7684
@sanjukumari7684 Ай бұрын
e^i×pie = x can also be a solution?
@Nikioko
@Nikioko Ай бұрын
@@sanjukumari7684 e^πi = -1, and (-1)^4 =1
@trumpetzone0
@trumpetzone0 13 күн бұрын
x=1 1^4= 1
@NuzranRahat
@NuzranRahat Ай бұрын
Its really easy when you watch the "x^3=8" video were he shows you all the solutions to that equation. But this one showed me that there are more ways you can solve these equations. Thank you ❤❤❤
@ferretyluv
@ferretyluv Ай бұрын
I saw your comment and I just automatically knew the answer as 2 because I know the cube root of 8 is 2. So I’m confused how that’s relevant.
@thisjosiah
@thisjosiah Ай бұрын
@@ferretyluv You have no idea what's possible
@nasdfigol
@nasdfigol Ай бұрын
​@ferretyluv since the root is to the 3rd, there are 3 solutions meaning there are 2 more solutuons
@mgancarzjr
@mgancarzjr Ай бұрын
​​@@ferretyluvlook up roots of unity. They're complex number solutions but pretty easy to solve if you can convert degrees to radians and then understand that e^(i * pi) is equivalent pi radians in the complex plane.
@mgancarzjr
@mgancarzjr Ай бұрын
​​​​@@ferretyluvso for example, x^3 = 8 has a solution at 2 but also 120 degrees rotated into the complex plane and 120 degrees rotated beyond that (360 degrees / 3 = 120 degrees, so unique solutions at 0, 120, and 240 degrees) 2 * e^(0 * i * pi) = 2 * 1 2 * e^(2 * i * pi / 3) 2 * e^(4 * i * pi / 3)
@jayJEEt.08
@jayJEEt.08 Ай бұрын
1:00 those markers switch😳
@samukaze5810
@samukaze5810 Ай бұрын
He's the master of blue pens and red pens
@marcogiai-coletti354
@marcogiai-coletti354 Ай бұрын
Your second method explains the concept really well.
@timeonly1401
@timeonly1401 Ай бұрын
2:59 OMG!! The FIRST TIME I've ever seen BPRP flub a marker color change!! It'll go onto my list of "What were you doing when such-&-such event happened?". 😂😂❤
@rotemlv
@rotemlv Ай бұрын
Another way is to make a visit to trig land and use De Moivre's tools. Probably the most annoying way to write on paper but it is my favorite, as it helps you see the geometric properties of the roots of a complex number.
@koennako2195
@koennako2195 Ай бұрын
He mentions this at the end of the video. He says something along the lines of "convert to polar form" which is the same as using De Moivre's Theorem.
@ultrio325
@ultrio325 Ай бұрын
Pro tip: Always write all polar complex numbers in terms of Euler's formula, trust me it'll make literally everything easier
@emconstrucao.2235
@emconstrucao.2235 Ай бұрын
Another way of solving it would be to set y=x², and then y²=1, y=±1, x²=±1, x=±√±1. Finally x=1, -1, i and -i
@Nikioko
@Nikioko Ай бұрын
Quick way using Euler's formula: x⁴ = 1 In the complex plane, the four solutions form a regular tetragon (= square), inscribed by a circle with the radius ⁴√1 and the centre at the origin: x = ⁴√1 ⋅ [cos(n ⋅ 360°/4) + i ⋅ sin(n ⋅ 360°/4)] n = 1→4 x₁ = 1 ⋅ [cos(90°) + i ⋅ sin(90°)] = 0 + i ⋅ 1 = i x₂ = 1 ⋅ [cos(180°) + i ⋅ sin(180°)] = −1 + i ⋅ 0 = −1 x₃ = 1 ⋅ [cos(270°) + i ⋅ sin(270°)] = 0 + i ⋅ (−1) = −i x₄ = 1 ⋅ [cos(360°) + i ⋅ sin(360°)] = 1 + i ⋅ 0 = 1 Long way using algebra: x⁴ − 1 = 0 Apply third binomial formula: (x² + 1) ⋅ (x² − 1) = 0 Apply the identity i² = −1 on the first bracket: (x² − i²) ⋅ (x² − 1) = 0 Apply the third binomial formula twice again to get the fully factored form: (x + i) ⋅ (x − i) ⋅ (x + 1) ⋅ (x − 1) = 0 According to the rule of the zero product, the whole product is zero if one of the factors is zero. So we get: x₁ = −i ∨ x₂ = i ∨ x₃ = −1 ∨ x₄ = 1 𝕃ₓ = {−1, 1, −i, i}
@zachansen8293
@zachansen8293 Ай бұрын
Why aren't there infinite answers?
@Nikioko
@Nikioko Ай бұрын
@@zachansen8293 Because an nth degree polynomial has n solutions. You can factor out each solution and get the factored form of the sort (x − a) (x − b) (x − c) ... = 0. According to the rule of the zero product, the whole product becomes zero when one of the factors is zero. That is the case for x = a, x = b, x = c, etc. If you have a 3rd degree polynomial with the factored form (x − a) ⋅ (x − b) ⋅ (x − c) = 0, then the normal form is x³ − (a+b+c) ⋅ x² + (ab+bc+ac) ⋅ x − abc = 0 You see that in the factored form, every factor is a binomial with x. So, in the multiplication of these factors, the highest power of x is the number of factors. And that's why there are not infinite answers.
@zachansen8293
@zachansen8293 Ай бұрын
@@Nikioko is e^ii3pi not a solution? 5pi?
@yiutungwong315
@yiutungwong315 Ай бұрын
Good 💯👍
@mokouf3
@mokouf3 Ай бұрын
​@@zachansen8293 Using polar form, we have x = e^(nπi/2) which may give you an impression of having infinite many answers. In fact, you need to remember that e^(2kπi) = 1, if you set n = 4k+1 in x = e^(nπi/2), you have x = e^((4k+1)πi/2) = e^((2k+k/2)πi) = e^(2kπi) * e^(kπi/2) = e^(kπi/2)
@tankman1301
@tankman1301 Ай бұрын
I revised complex numbers a few weeks ago, but you completely caught me off-guard
@obinator9065
@obinator9065 Ай бұрын
if you want to troll someone solve this using the general quartic equation
@joeljain10
@joeljain10 Ай бұрын
quartic equation Blue comment spotted
@nathanoher4865
@nathanoher4865 Ай бұрын
@@joeljain10so it’s not just me, neat
@bossstarling217alt2
@bossstarling217alt2 Ай бұрын
​@@joeljain10Blue comment?
@notoriousd.i.g.87
@notoriousd.i.g.87 22 күн бұрын
You're evil lol.
@zerid0
@zerid0 Ай бұрын
Another way (that works well with values other than 4) is to notice that |x^4|=|x|^4=1 So |x|=1. Therefore we can write x in the form x=e^(iy) x^4=1 means e^(4iy)=1 Which means 4y is a multiple of 2π so y is either 0, π/2, π or 3π/2 modulo 2π which is exactly 1, i, -1 and -i
@takix2007
@takix2007 Ай бұрын
Write "x⁴ = 1" => "|x⁴| = |1|, and arg(x⁴) = arg(1) [2.pi]". You also write x as a.exp(i.theta), then x⁴ = a⁴.exp(4.i.theta) a⁴ = 1 with a in R+ (by definition of a complex number modulus) => a =1. 4.theta = 0 [2.pi] => theta = 0 [pi/2].
@Yootlander
@Yootlander 28 күн бұрын
He really is crazy with the marker swap
@Chordrider
@Chordrider 25 күн бұрын
He is fast but still easy to follow. Virtuoso use of the whiteboard. Just enough talking. I don't need to learn any math but I watch anyway. Good fun!
@davidwillmore
@davidwillmore Ай бұрын
0:40 Let me guess, +/- i, right?
@eclipse5708
@eclipse5708 10 күн бұрын
Wrong. It's +/-i or +/-1. There are 4 solutions, not 2.
@joshuajoestar407
@joshuajoestar407 9 күн бұрын
@@eclipse5708pretty sure that’s why there’s a time stamp.
@kavinesh_the_legend
@kavinesh_the_legend Ай бұрын
1,-1,i,-i
@silense4644
@silense4644 Ай бұрын
j, -j, k, -k, e₄, -e₄, …
@kavinesh_the_legend
@kavinesh_the_legend Ай бұрын
@@silense4644 I understand j,-j,k,-k but I don't know what are the last two
@silense4644
@silense4644 Ай бұрын
@@kavinesh_the_legend just an extension of hypercomplex numbers. e4 to e7 is all the other imaginary numbers in an octonion, e8 to e15 in a sedenion etc
@kavinesh_the_legend
@kavinesh_the_legend Ай бұрын
@@silense4644 I ain't paid enough to understand this💀💀
@MorgothDarkLord83
@MorgothDarkLord83 Ай бұрын
​@@kavinesh_the_legend No one is "paid" to understand anything
@toasty-fy3
@toasty-fy3 7 күн бұрын
Absolutely AMAZING video, I used it to explain the concept to my students and they understood it perfectly! Thank you so much, looking forward to more amazing videos!
@DonTheRealMan
@DonTheRealMan Ай бұрын
Mathematicians: *stumped by negative square roots* Rafael Bombelli: Just calls √(-1) "i" and moves on... I love how based mathematicians are🤣
@reizinhodojogo3956
@reizinhodojogo3956 Ай бұрын
he ran out of real numbers and had to imagine new numbers /j
@thisjosiah
@thisjosiah Ай бұрын
@@reizinhodojogo3956 That is kind of actually true though
@highviewbarbell
@highviewbarbell Ай бұрын
@@thisjosiah ssssort of yeah, i guess. He found a place in math where definitions were missing and extended the number system into another dimension
@lukasjetu9776
@lukasjetu9776 Ай бұрын
​@@reizinhodojogo3956 /j...azz
@pritamdas5439
@pritamdas5439 26 күн бұрын
Leonhard euler used 'i' for the first time to represent √-1 But he was not the first to study imaginary numbers
@siener
@siener Ай бұрын
I think the simplest, most general and most useful way to solve this is to write 1 in it's polar form and then take the natural logarithm on both sides, and the rest is easy. Then you can replace the "4" with a "n" to get the general form for the roots of unity. The general form is also pretty easy to visualize: There are always n solutions, evenly spaced on the unit circle.
@takix2007
@takix2007 Ай бұрын
I'm not sure you are allowed to take the natural logarithm of a complex number without defining it beforehand.
@takix2007
@takix2007 Ай бұрын
Also, you don't need ln to do that. You write "x⁴ = 1" => "|x⁴| = |1|, and arg(x⁴) = arg(1) [2.pi]". You also write x as a.exp(i.theta), then x⁴ = a⁴.exp(4.i.theta) a⁴ = 1 with a in R+ (by definition of a complex number modulus) => a =1. 4.theta = 0 [2.pi] => theta = 0 [pi/2]. Longer, but "safer" as you do not take a potentially unallowed shortcut.
@okaro6595
@okaro6595 Ай бұрын
I did it geometrically what angles multiplied by 4 give 2pi*n: 0, pi/2, pi, 3pi/2 so you get 1, i, -1, and -i.
@davidwillmore
@davidwillmore Ай бұрын
Same!
@magnusmalmborn8665
@magnusmalmborn8665 Ай бұрын
The polar method generalizes to all powers, so maybe do a video with it?
@Todo_2912
@Todo_2912 11 күн бұрын
This is the first video i didn't watch. I took the problem, solved it and skipped to the end. My solution looks a lot like the first solution and is correct^^
@system3378
@system3378 4 күн бұрын
What about x = sqrt(1) and x = -sqrt(1) ?
@rdspam
@rdspam Ай бұрын
Roots of unity - e^((2*pi*k)/n)i. So e^(1/2,1,3/2,2)*pi*i, or i, -1, -i, 1
@thej3799
@thej3799 Ай бұрын
You are so smart! Also you are an amazing teacher and presenter. It humbles me how much math I do not understand. This channel is always making me think.
@kururhai4531
@kururhai4531 Ай бұрын
unrelated to video but I'm glad I found your channel currently our class completed calculus 1 and is teaching calculus 2, your explanation of questions really helped me and cleared up previous queries about some integrals and all doubts
@Lightning78821
@Lightning78821 Ай бұрын
A more complex way of doing this: r^(1/n)=r(cis(Θ)). The 4 theta values would be 0,90,180 and 270. Input and solve
@El_Presidente_5337
@El_Presidente_5337 25 күн бұрын
This dude just randomly showed up in my recommendations when I began going to university and started to fresh uo my math.
@BeeDaWorker
@BeeDaWorker Ай бұрын
Show the polar method pls because y not Also I'm about to learn it soon so it'd be nice to see that stuff applied in a simpler question like this
@RickyRatte
@RickyRatte Ай бұрын
Yeah yeah, this guy is good at maths, that's cool and all, but what's really impressive here are the marker handling skills
@LolaSteininger
@LolaSteininger 21 күн бұрын
I saw the thumbnail and felt so smart, answering “1”, until I watched the video.
@mokouf3
@mokouf3 Ай бұрын
3rd way, roots of unity: x⁴ = e^(2nπi) x = e^(nπi/2) = ±1 or ±i
@fernandojackson7207
@fernandojackson7207 27 күн бұрын
Akchually, the factorization a^2-b^2=(a-b)(a+b) only holds for commutative rings. Try it with a couple of non-diagonal matrices. Of course, the Reals, Complexes are commutative rings, but it may be a good idea to qualify the equality from time to time.
@tchevrier
@tchevrier Ай бұрын
you can also use the unit circle for complex. numbers.
@sie_khoentjoeng4886
@sie_khoentjoeng4886 23 күн бұрын
As we know, power with even nunber has positive and negative roits. And also, power with multipication of 4 of i (4,8,12,..) has imaginary roots, since i^4 is 1 (also i^8=1, i^12=1,...) --- So, X^4=1 has two real number, √1 and -√1 or 1 and -1, and imagery number i and -i. Total solutions are X = {1 -1, i, -i.}
@snaukball8764
@snaukball8764 28 күн бұрын
Another way is to imagine the complex plane, and just divide 360° into 4, which is 90°, then find which points lie on the unit circle at angles 0, 90, 180, and 270 degrees.
@justafellowgamer-c5w
@justafellowgamer-c5w 8 күн бұрын
I couldn't wait to grow up and take your classes
@acekingbones
@acekingbones Ай бұрын
Or you could just recall the power properties of i, where it alternates between i, -1, -i, and 1
@nicef4919
@nicef4919 Ай бұрын
Please find all values of 4^x=x^64 I got two 256 and 1.0229
@OptimusPhillip
@OptimusPhillip Ай бұрын
My attempt: If x^4=1, then x^2=1^(1/2) 1^(1/2)=±1 If x^2=±1, then x=1^(1/2) or (-1)^(1/2) (-1)^(1/2)=±i Therefore, x=-1, 1, -i, or i.
@joseeoliviero6078
@joseeoliviero6078 Ай бұрын
I think most people would have taken (x^2 + 1) equals +-sq rt of -1 which is also +- i. But I really like the method you used. Thanks
@AtomicSteel
@AtomicSteel Ай бұрын
You are a life saver
@PawełDąbrowski-n3w
@PawełDąbrowski-n3w 12 күн бұрын
X⁴-1⁴=0 (X²)²-(1²)² = 0 (x²-1)(x²+1) = 0 From the first parenthesis we get: X=±1 From second: X²+1=0 X=±√-1 X=±i So we have 4 answers.
@HargunCuberOG
@HargunCuberOG Ай бұрын
Nice one dude 👍👍
@NavalSharma-r9z
@NavalSharma-r9z Ай бұрын
Where were you
@yiutungwong315
@yiutungwong315 Ай бұрын
X = 1 and -1 (Real Number) X = i and -i (Complex Number)
@ralphbehar
@ralphbehar Ай бұрын
Is no one gonna talk about the BOXES of markers in the bottom left????
@nastykerb34
@nastykerb34 Ай бұрын
Underrated comment
@Twi_543
@Twi_543 Ай бұрын
That the bottom rigth but cool ig
@DriftinVr
@DriftinVr Ай бұрын
x^4-1^4 (x^2)^2-(1^2)^2 (x^2-1^2)(x^2+1^2) (x+1)(x-1)(x^2+1) x^2=-1 x=+-i x=1,-1,i,-i
@frankoptis
@frankoptis 26 күн бұрын
I miss the formal stuff. x e R, x = {1, -1}; x e C => x = .... or something like that
@nxcnibiru
@nxcnibiru Ай бұрын
"There's no more real integers that would turn into 1 with a non-0 power so it must be something imaginary; I think that fits yea x⁴ -> (x²)² -> (-1)² -> 1"
@Garfield_Minecraft
@Garfield_Minecraft Ай бұрын
|i| = 1
@sigmagamer111
@sigmagamer111 Ай бұрын
u should try doing singapore's GCE o level elementary and additional math papers
@thisjosiah
@thisjosiah Ай бұрын
e^(n(iπ/2)) *where n=any integer
@rohangt1
@rohangt1 Ай бұрын
x^4=a => x=√a, -√a, √ai, -√ai
@streambotnt2095
@streambotnt2095 Ай бұрын
super helpful!
@cooltaylor1015
@cooltaylor1015 Ай бұрын
x=1 solved from thumbnail. Yes it's trivial. It may not be the only solution. But it's RIGHT THERE
@j.t.z.s.
@j.t.z.s. Ай бұрын
(x^2-1) (x^2+1)=0 (x^2-1)=0 or (x^2+1)=0 x^2=1 or -1 x=±1 or ±i
@General12th
@General12th Ай бұрын
So good!
@kirkkohnen5050
@kirkkohnen5050 24 күн бұрын
Polar coordinates make finding all n of nth roots trivially easy.
@7Carryon
@7Carryon Ай бұрын
When we have to solve an equation, the teacher have to say in which set. R or C? But the teacher knows what have taught to his students, so never saying the set. That is understood! By the way, sqrt(x^4) = 1 => abs (x^2) =1 => x^2=±1
@starleaf-luna
@starleaf-luna 28 күн бұрын
the 2nd way feels like when I'm taking a math test and I've done sth wrong, but I try to maybe weasel out of it and get an answer.
@MagicProG
@MagicProG Ай бұрын
usually, if you want complex decisions you should write z^4 = 1
@RyanLewis-Johnson-wq6xs
@RyanLewis-Johnson-wq6xs Ай бұрын
X^4=1 X=±1 X=±i
@Brid727
@Brid727 Ай бұрын
my way: x^4 = 1 x^2 = +/- 1 case 1: x^2 = 1 x=+/-1 case 2: x^2 = -1 x=+/-i x=+/-1, +/-i ezpz
@TonyFisher-lo8hh
@TonyFisher-lo8hh 12 күн бұрын
The original piroblem is incomplete,. It does not specify the number domain. If real, two distinct solutions; ifs complex then four.
@matu949
@matu949 9 күн бұрын
x⁴ = 1 x = 1, because 1^any (positive) number is always 1
@hodayfa000h
@hodayfa000h Ай бұрын
Doesn't multiplying by i rotate 90°? So multiply it 4 times get 360° so one, and the same thing but in the negative, same location of 1.
@yaseenelhosseiny
@yaseenelhosseiny Ай бұрын
X=plus-minus1, plus-minus I (sqrt(-1))
@_Rainbooow
@_Rainbooow 29 күн бұрын
x = 1 so easy. literally could do this in a second
@wabbagabba
@wabbagabba Ай бұрын
great video 🎉🎉
@eclipse5708
@eclipse5708 10 күн бұрын
x^2 = +- 1, then x = i, -1, -i, or 1. Done.
@lool8421
@lool8421 29 күн бұрын
tbh it's kinda obvious if you know about complex numbers (-i)^4 = (i)^4 * (-1)^4 = 1 * 1 = 1 alr wrote down 3 answers there and 1^4 is just trivial
@juanj.smithrobertob.sarcos1347
@juanj.smithrobertob.sarcos1347 27 күн бұрын
I am still looking for the APPLICATION of (-1)^1/2, that is why I am SOL(Shouting out loud) for recess.😁😆😅😁😆
@m.h.6470
@m.h.6470 Ай бұрын
Solution: x⁴ = 1 |-1 x⁴ - 1 = 0 (x²)² - 1² = 0 (x² - 1)(x² + 1) = 0 x² - 1 = 0 (x - 1)(x + 1) = 0 x₁ - 1 = 0 |+1 x₁ = 1 x₂ + 1 = 0 |-1 x₂ = - 1 x² + 1 = 0 |-1 x² = -1 |√ |x| = √-1 |x| = i |x₃| = i x₃ = i |x₄| = i -x₄ = i |*-1 x₄ = -i
@jomariraphaellmangahas1991
@jomariraphaellmangahas1991 Ай бұрын
The real answer is x = iⁿ, where n is element of integer
@AidenHardy596
@AidenHardy596 Ай бұрын
Before watching Pretty sure the solutions are 1, -1, i, and -i
@joeljain10
@joeljain10 Ай бұрын
Why i feel like I'm having Deja vu watching this?
@JimmyMatis-h9y
@JimmyMatis-h9y 22 күн бұрын
hmmm now x⁴ = -1 .... so 4th power equations aren't just "sharp parabolas"... 🤔 ty professor.
@NLGeebee
@NLGeebee Ай бұрын
Great first solution on the left. On the right side, you should first substitute i² = -1 before applying ±√
@anonymouscheesepie3768
@anonymouscheesepie3768 Ай бұрын
(x^2 - 1)(x^2 + 1) = 0 x = +-1, +-i
@Creepmond
@Creepmond Ай бұрын
That's nice, but what about x^8=1?
@davidwillmore
@davidwillmore Ай бұрын
(i/2)^n for all integer n from 1 to 8?
@samamethyst997
@samamethyst997 Ай бұрын
ill try to do this without watching the video so we gotta prove x^4 = 1 take the square to the other side making it a square root so x= fourth root of one therefore converting that to x = 1 because root of 1 or fourth root of 1 will result into 1 therefore the answer being x = 1
@Fengwunna100
@Fengwunna100 11 күн бұрын
Why did you use abc and x? How did alpabet come?
@DevMan2342
@DevMan2342 8 күн бұрын
Do you not know what variables are?
@Fengwunna100
@Fengwunna100 8 күн бұрын
@DevMan2342 i dont know
@DevMan2342
@DevMan2342 8 күн бұрын
@@Fengwunna100 why are you on a math video if you don’t know basic math. Go to school first
@theflyingcrane1008
@theflyingcrane1008 Ай бұрын
Bruh I’m majoring in law idk why I’m watching this but it’s cool af
@sid6076
@sid6076 28 күн бұрын
Now I get x does equal 1 but it can also equal -1 and i and -i
@Caysen52TheSecond
@Caysen52TheSecond Ай бұрын
any format of 1 is correct including i and -i.
@rajatdogra96
@rajatdogra96 Ай бұрын
+-1 and +-i 😂😂
@idk39381
@idk39381 Ай бұрын
hi can u do the 8 hours series back (need indices,surd,log question)
@zachansen8293
@zachansen8293 Ай бұрын
wouldn't the polar form show that you hadn't found *ALL* the solutions to the equation since there are infinite ones? Huh, WA also shows only 4 solutions, but it sure seems that e^(i(2n+1)pi) nEZ are all solutions
@bravcoder
@bravcoder 19 күн бұрын
looking at it, I think the answers are going to be, +1, -1, +i, -i
@Zianagi
@Zianagi 4 күн бұрын
My uneducated brain wondering on what is going:
@nolimitzs00
@nolimitzs00 9 күн бұрын
x⁴+1=0 would be little bit more interesting
@shirinpatel9339
@shirinpatel9339 8 күн бұрын
x^4=1 1^4=1
@tom-kz9pb
@tom-kz9pb 16 күн бұрын
It could see the 1 and -1 solutions, in just a glance, but always forget about the pesky "i" complex solutions that I know have to also be there.
@OnePlusOneEqualsOnePlusOne
@OnePlusOneEqualsOnePlusOne Ай бұрын
Sooooooooooooooooooooooooo, X is still equal to 1?
@Marandahir
@Marandahir Ай бұрын
Shouldn’t it just be x = i ?
@lwhxe
@lwhxe Ай бұрын
Why x = (-i)? Since (-i)^4 = -1? How is this possible?
@lwhxe
@lwhxe Ай бұрын
Oops, I'm stupid... -i means other way round...
@yiutungwong315
@yiutungwong315 Ай бұрын
(-i)^2 = (-1) (-1)^2 = 1 So (-i)^4 = 1
@lwhxe
@lwhxe Ай бұрын
@@yiutungwong315 Yeah, I got it just a sec later...
@JohnVance
@JohnVance Ай бұрын
In the apocalypse, this guy will be the only one left with dry erase markers.
@jeffocks793
@jeffocks793 Ай бұрын
I really enjoyed that. I want more! (Ps I can't see a subscribe button 😮)
@Wienco303
@Wienco303 9 күн бұрын
Solution: 1
@Wienco303
@Wienco303 9 күн бұрын
Solutions: 1 -1 i -i
@DooMNewLechia
@DooMNewLechia Ай бұрын
I wonder if x can be equal to e^pi*i
@lwhxe
@lwhxe Ай бұрын
It can! It's just -1.
How to solve an “almost perfect” cubic equation
5:20
bprp math basics
Рет қаралды 12 М.
A simple question most people get wrong
9:10
MindYourDecisions
Рет қаралды 190 М.
СКОЛЬКО ПАЛЬЦЕВ ТУТ?
00:16
Masomka
Рет қаралды 2,9 МЛН
Real Man relocate to Remote Controlled Car 👨🏻➡️🚙🕹️ #builderc
00:24
Ice Cream or Surprise Trip Around the World?
00:31
Hungry FAM
Рет қаралды 18 МЛН
"It's scary how many people are calling it wrong, saying it's only 3"
3:44
Solving x^5=1
9:49
blackpenredpen
Рет қаралды 144 М.
Solving An Insanely Hard Problem For High School Students
7:27
MindYourDecisions
Рет қаралды 3,5 МЛН
TikTok is a bad math goldmine! Solving x+2=x-2. Reddit r/sciencememes
4:21
Solving a 'Harvard' University entrance exam
11:31
MindYourDecisions
Рет қаралды 303 М.
solving equations but they get increasingly more impossible?
11:25
blackpenredpen
Рет қаралды 559 М.
End Result Will Shock You!!
4:54
Brain Station
Рет қаралды 11 М.
A Proof That The Square Root of Two Is Irrational
17:22
D!NG
Рет қаралды 6 МЛН
СКОЛЬКО ПАЛЬЦЕВ ТУТ?
00:16
Masomka
Рет қаралды 2,9 МЛН