The key to understanding how this works with this type of differential equation is understanding how the underlying algebra in finding the roots of the equation. The funny things is is that the calculus is not really all that difficult. It is the work you do with the algebra that can make it a rather long and tedious process. Nicely done my friend!
@JaniceMutinda3 жыл бұрын
You're such a sweet teacher 🥺😊 I've understood so well. Thank you
@matsigh5 жыл бұрын
I honeslty do not understand how my professor makes this so hard. Thank you so much.
@alishalbayev19524 жыл бұрын
Same thoughts:)
@Blalalala-xd5tl2 жыл бұрын
You probably do harder examples in class
@changfengcai46572 жыл бұрын
I honestly don't understand why everyone has shitty professors, I never met one bad math prof in my life lol
@emilianohorta9040 Жыл бұрын
@@changfengcai4657 usually people don’t apply themselves in person. They go home and after looking at their notes they give up. Never met a bad prof either lol
@garthenar4 жыл бұрын
"Keep your patience and everything will work out nicely" that is the best advice I've ever heard for math.
@MediocreChannel685 жыл бұрын
I just noticed why his channel name is blackpenredpen, never looked at his hands
@blackpenredpen5 жыл бұрын
Mediocre Channel : )))
@stephenfulmer86464 жыл бұрын
I just realized you switch expo markers with them both in your hand. What a awesome teacher. Thank you for all of your videos, I am currently a 4.0 student for Chemical engineering with a biology minor for pharmacy. I now work for my colleges tutoring department for calculus 1-3. I am about to start for DE. Thank you for what my professors couldn’t give me, I really appreciate it!!
@F199915 жыл бұрын
Thank youuu. You're a great guy. You make me feel like you're just a friend explaining it to me, but your explaining is very clear and helpful!
@blackpenredpen5 жыл бұрын
Fabi Yang awww thank you!!!
@Anuq4 жыл бұрын
6 mins of this video was better than 2 hours of my professor
@fikrirhim5 жыл бұрын
thank you for teaching the easiest way to do long division
@moe1647 Жыл бұрын
this teacher is saving my GPA today, pray for me friends I got 3.5 hours to my final on ODE's
@sotosmath62845 жыл бұрын
There is another trick for factoring out polynomials of degree>2.If you take the sum of the coefficients of the polynomial and the contastant one and if it turns out to be zero(the sum of them) then one of the roots of the polynomial is definitely 1!!! In this example if you sum 1+1-6+4=0 so the number 1 is one root of the polynomial!
@BukhalovAV7 жыл бұрын
Do you know about D/4? When coefficient B in Ax^2 + Bx +C is even, you can yous simplier formula: D/4 = (B/2)^2 - AC x = B/2 ± sqrt(D/4) This way of solving square equations is better, when coefficients are big.
@jahansaid63826 жыл бұрын
Hey, I just want to thank you, and you are awesome :) I am going to get an A++, you only solve a couple question, but the good things is your example pretty much cover all the parameters :) Thank you very much !!
@meliodas-sama87444 жыл бұрын
This is the smoothest way I have learned HOODEs. Thank you!
@steveboege91952 жыл бұрын
Thanks!
@ガアラ-h3h Жыл бұрын
Foun another way to do this problem sir in this equation it’s obvious that it must be something like e^ax so we can write equation as => e^x(a^3 +a^2 -6a +4) = 0 => 0 = a^3 + a^2 -6a + 4 Trivial solution a = 1 now do polynomial division then you get all the solution you got
@marwamohammed78497 жыл бұрын
You are amazing 🌷 thank you.. from #Iraq 👍
@mohammedtaleb59235 жыл бұрын
حتى الاجانب بعد بتقولون لهم أنكم من العراق
@jacobtjalkens24093 жыл бұрын
This is the reason I haven't dropped out. If only he could teach all my classes.
@margaviljoen8953 жыл бұрын
This made my day thank you :)
@eggshells6527 жыл бұрын
great video! helped solving alot of constant coefficient problems
@tomatrix75254 жыл бұрын
You legend!!!!!!! Keep em going blackpen
@saiprasadsharma3934 жыл бұрын
Oh brother... thank you ❤️😭😭
@scuzyprod.16112 жыл бұрын
what's the deal with the e's at the end?
@carultch Жыл бұрын
Euler's number e. It's the base of the natural exponential, which mathematicians consider the "pure form" of this function, due to its elegant calculus. The prototype solution for differential equations in general, assumes the solution is e^(r*t). You then apply this to the diffEq, and get a polynomial of r, multiplied by e^(r*t). The roots of the polynomial of r, will tell you the coefficients on t inside the exponential function. Real values of r are exponentials, either growth (positive) or decay (negative). Complex values of r, usually coming as a conjugate pair, imply sine and cosine functions of t. The solution is a linear combination of these functions using all possible values of r.
@longsteinpufferbatch49492 жыл бұрын
I'm in 12th grade and it's nice to see that higher stuff like this is fairly easy
@moromobilul92623 жыл бұрын
Definitely you are the best!!!
@salmanKhan-rq4lw5 жыл бұрын
Glorious explanation sir g from now I follow you My dear sir
@Theterry3835 жыл бұрын
alright so was I supposed to figure this out on my own for my webwork or...?
@SirGrimGamer5 жыл бұрын
Wonderful. Quick, concise, and effective.
@nayanajyothi91053 жыл бұрын
It's very easy to understand thanks a lot 🙏
@peytonwms128Ай бұрын
How do you use the general solution to solve the initial value problem for a third order?
@ahmadalikhan58915 жыл бұрын
LOVE YOUR LECTUERS SIR,,,,,, IT HELP ME,,,,,,,,,,,,,,,,
@AbdullahKhan-hs4nk3 жыл бұрын
I think you can help me alot...
@david4648 Жыл бұрын
Thank you so much for the help!!
@deepakbriglall58452 жыл бұрын
Thank you so much my professor makes this so confusing.
@DoenerZumMitnehmen5 жыл бұрын
so the result of a higher order homogeneous differential equation always comes out as a sum of different exponential functions?
@BenBrawn4 жыл бұрын
Döner zum mitnehmen only if the roots of the characteristic/auxiliary equation are real and distinct.
@kurstenarsenia46644 жыл бұрын
Thank you very much for your videos
@gilmanwazirpoetry340118 күн бұрын
Great job 👏
@leonardobarrera2816 Жыл бұрын
probably I will use the golden ratio!!!
@kimakram73557 ай бұрын
Bruh u r the best ❤
@qaulsidik18893 жыл бұрын
Pal u smart as hell ooh my👏👏👏👏
@obinnanwakwue57357 жыл бұрын
You actually can factor the whole left side of the equation, just not by grouping: Use the rational root theorem where a_0 = 4 and a_n = 1. The factors of a_0 are 1, 2, and 4 and the factor of a_n is just 1. So you check for the following rational numbers: +/- (1, 2, 4)/1. 1/1 is a root, so (r - 1) can be factored. By applying polynomial long division, you can get (r^2 + 2r + 4). So the equation factors into (r - 1)(r^2 + 2r + 4) = 0. Then solving the equation is easier.
@klausolekristiansen29607 жыл бұрын
Which is exactly what he did (except that he used another procedure for the division).
@takyc7883 Жыл бұрын
What if the roots of the quadratic are complex? do you still use sin and cos like for 2nd order?
@carultch Жыл бұрын
Yes. As an example, consider: y" - 9*y' - 28*y = 0 The characteristic equation is: r^3 - 9*r - 28 = 0 The solutions: r = 4, r = -2 + sqrt(3), and r = -2 - sqrt(3) for r=4, the corresponding y solution term will be: e^(4*t) for the conjugate pair of the remaining roots, the solution for y will be e^(-2*t), multiplied by a linear combination of sin(sqrt(3)*t) and cos(sqrt(3)*t). This is what you get, any time you get a complex conjugate pair of roots, which will always be the case if you start with real coefficients, that your roots if complex, will be a conjugate pair. If you didn't have a complex roots coming in conjugate pairs, you'd have to use first principles of Euler's formula to unpack the meaning of the complex roots. It would still be related to sine and cosine, but the imaginary part wouldn't cancel. For us, the general solution will be: y = A*e^(4*t) + [B*cos(sqrt(3)*t) + C*sin(sqrt(3)*t)]*e^(-2*t)
@takyc7883 Жыл бұрын
thanks or the example@@carultch
@irammaham95775 жыл бұрын
What about non-homogenous equation?
@AmjadAli-py7ce4 жыл бұрын
Wow great 👌
@mankienkueth2056 жыл бұрын
This is very mature lecturer and he changed my life style in mathematics for all.
@AnthonySpinelli-fe4vn4 жыл бұрын
I find it quite beautiful how this problem required no calculus, (at least from what we did; the step for achieving the equation of r is a calculus idea as it demands derivatives).
@rednaalmutlaq81907 жыл бұрын
thank you i am so happy to find this video that help me in exam .
@Grundini915 жыл бұрын
Any time you are trying to factor a polynomial with a degree higher than 2 if you add up the coefficients and get 0, then (r-1) will be a factor.
@aparupanayak87606 жыл бұрын
Please do a video where there is a constant term and initial conditions are given.
@duncancrogan99433 жыл бұрын
Very helpful! Thank you :)
@goalman185 жыл бұрын
Aren't there 3 cases of this? This is the solution if the roots are Real and Distinct right? What if there's repeated real roots or complex conjugate roots? I am unsure of how to look for them for auxiliary equations which aren't quadratic.
@drey7753 жыл бұрын
real ones, e^rt repeated e^rt, xe^rt sqrt of negative, (lamda)cos(mu)x and (lamda)sin(mu)x, where 1+- SQRT(number)i. the number is the lamda and the sqrt is mu
@floreskyle14 жыл бұрын
why can't i find any methods for higher order nonlinear DE anywhere?
@jiayiluo92605 жыл бұрын
you literally have everything I need
@sunitasingh-rj6jq6 жыл бұрын
Sir if one is real and other 2 complex roots?
@pushkarchauhan40175 жыл бұрын
Then solution will be e^real part (C sin img part + c cos img part),
@feiteng66023 жыл бұрын
So we solve 3rd order DE the same way as second order?
@mihai.ciorobita4 жыл бұрын
Is it possible using Laplace transform ? I guess no because initials values are needed for Laplace of derivatives functions and they are not given. Am I right ?
@carultch Жыл бұрын
You could also do it with the Laplace transform, and simply set up placeholders for the initial conditions. You'd assign u, v, and w as the three initial conditions, such that y(0) = u, y'(0) = v, and y"(0) = w. You'd then proceed, and get a solution with all of its coefficients in terms of u, v, and w.
@sunilmanga94526 жыл бұрын
hey i got roots as r= 2,-4 while solving r^2+2r-4 .. who's correct
@awesometico5 жыл бұрын
Those arent the roots, plug em in to the quadratic and you see that you dont get 0
@danyalrasheed23824 жыл бұрын
Thanks a lot 💯
@hawraaraheem24492 жыл бұрын
Good job but Im not understand final solution why u used exponential to the powe t ?
@carultch Жыл бұрын
It's part of the standard procedure of solving higher order diffEQ's in general. Any time the given diffEQ is a linear combination of y and its derivatives, equal to zero, we find the solution by assuming a prototype solution (called an Ansatz) of e^(r*t). We then take its derivatives and apply it to the original diffEQ. This sets up a polynomial of r, all multiplied by e^(r*t), and equal to zero. Since e^(r*t) can never equal zero for all possible t-values, we set the polynomial of r equal to zero, and solve for the values of r. We then construct a linear combination of e^(r*t), using all possible values of r. Real and distinct values of r, will mean a linear combination of exponentials. Real and repeated values of r (e.g. critical damping), will mean t*e^(r*t) and e^(r*t), such that we multiply by t until we have linearly independent functions to add together. Complex values of r, will mean an exponential of t times the real part of r, times a linear combination of sine and cosine of the imaginary part as the frequency.
@fgzgeimv8u6 жыл бұрын
can you make a video on Why and how long division works?
@kodigantinavakirans8364 жыл бұрын
Sir can you send sol for y"'-y=xe*cosx
@carultch Жыл бұрын
Given: y''' - y = x*e*cos(x) Observe that e is just a constant, rather than an exponential. More on that later. Start by finding the homogeneous solutions. yh''' - y = 0 yh = e^(r*x) (r^3 - 1)*e^(r*x) = 0 (r^3 - 1) = 0 (r - 1)*(r^2 + r + 1) = 0 r = 1 r = -1/2 +/- sqrt(3)/2 Thus: yh = A*e^t + e^(-x/2)*[B*sin(x*sqrt(3)/2) + C*cos(x*sqrt(3)/2)] Since there is no overlap with the given RHS, this means we don't need to multiply by more multiples of x for the particular solution. We have a single multiple of x, so we can construct the following guess for the particular solution: yp = D*sin(x) + E*cos(x) + F*x*sin(x) + G*x*cos(x) Take 3rd derivative: yp''' = (-3*F + E)*sin(x) + G*x*sin(x) - (D + 3*G)*cos(x) - F*x*cos(x) Apply to original diffEQ: yp''' - y = x*e*cos(x) (-D - 3*F + E)*sin(x) + (-D - 3*G - E)*cos(x) + (G - F)*sin(x) - (G + F)*cos(x) = x*e*cos(x) Equate coefficients: -3*F + E - D = 0 -D - 3*G - E = 0 G - F = 0 -G - F = e Solutions: D = 3/2*e E = 0 F = -e/2 G = -e/2 Thus: yp = 3/2*e*sin(x) - e/2*x*sin(x) - e/2*x*cos(x) Combine with homogeneous solution, and we have our result: y = A*e^t + e^(-x/2)*[B*sin(x*sqrt(3)/2) + C*cos(x*sqrt(3)/2)] + 3/2*e*sin(x) - e/2*x*sin(x) - e/2*x*cos(x)
@tıbhendese4 жыл бұрын
I think the solution of complex roots are different ? I mean the last one , multiplying with cosx + sinx
@drey7753 жыл бұрын
both 1+ and minus sqrt(5) are real numbers. You need the cos(mu)x / sin(mu)x when you get the sqrt of a negative and have i in the answer.
@OonHan7 жыл бұрын
Factor theorem?
@blackpenredpen7 жыл бұрын
Oon Han ues
@chayapitchas.47225 жыл бұрын
Thank you ❤️
@laoluitabiyi89925 жыл бұрын
what if you have a negative under the radical from the quadratic equation?!
@nicholaslau31945 жыл бұрын
complex roots, just use a complex constant so that when they multiply it will be real
@Awwdreon4 жыл бұрын
what do you do if u are only given y''' + 5y" = 0 ? love your videos by the way
@michaelmalutshi36134 жыл бұрын
You have one root (-5) and one repeated root (0). Y(t)= C1(e^(-5t)) + (C2 + C3t)e^(0t )
@mirzadabehram40845 жыл бұрын
you explained it perfectly and in as simple words as possible..but the question in my mind still remains..why do we need to learn this, i mean no offence but where is this exercise actually applicable in real life?
@jacobhall46554 жыл бұрын
This probably isn't the only answer but doesn't e^x satisfy the equation?
@carultch Жыл бұрын
It does. But to get the general answer, we want to find all possible solutions and form a linear combination of them.
@c3realpt6 жыл бұрын
Thanks a lot!
@حنينكاملكريمالزاملي3 жыл бұрын
مرحبا كيف اختبرة النتيجة وتوصلت لهذا الحل عدنة بلعربية نحله بطريقة القسمة الطويلة
@longsteinpufferbatch49492 жыл бұрын
It's just logically doing it tbh. Practice it a bit and you can do it without long division. Our teacher taught us this method in 11th grade it's really not that hard with practice
@josephbawo56522 жыл бұрын
Thanks cz
@unfinishedgenius37916 жыл бұрын
Thank you!
@akshaydighe10654 жыл бұрын
y^(3) + 5*y^(2)+3y+1=0 , how do find roots of this equation?
@yumirai42 жыл бұрын
I think there's no any cute way to do it apart from simply using vieta's substitution or some other cubic equation solving formula
@helloitsme75537 жыл бұрын
Can you do this by the la place transform I mean is that easier
@carultch Жыл бұрын
You could try, but you'll still end up needing to solve a cubic equation, in order to perform your partial fraction expansion. This is useful when given initial conditions, or when given a non-homogeneous right hand side.
@aviator172rr3 жыл бұрын
why that mic man why??? :D thanks for the video.
@mehdibenaich19666 жыл бұрын
why we did not use cos and sin for the soltion is complex root isnt !!!!!!!
@kevinsosa65023 жыл бұрын
jesus i shouldve paid more attention in algebra and pre calculus, i nearly forgot about synthetic division
@MNGN1015 жыл бұрын
Why are you holding a thermal detonator and who are you threatening to record this for you?
@sakilahammed56826 жыл бұрын
I am from Bangladesh
@hajisab70323 жыл бұрын
solve ivp x²y'''+4xy'-4y=x² y(1)=1,y'(1)
@0xbinarylol3 жыл бұрын
How to find c1, c2 and c3
@carultch Жыл бұрын
You'd require 3 known data points about the function, such as initial conditions. You'd then construct 3 equations with your constants as the 3 unknowns, and solve for them.
@barshabiswas95465 жыл бұрын
Thanks
@Kon_Engineer5 жыл бұрын
You are very good
@1234SLUR6 жыл бұрын
thanks mr hypebeast
@aneesakhan0372 жыл бұрын
Nice
@Bradley2016_2 жыл бұрын
-2φ appeared.. why?
@john-athancrow41696 жыл бұрын
Yes black pen red pen.
@maxlong73234 жыл бұрын
You are using Ruffini’s rule
@John-lf3xf6 жыл бұрын
Dude. This vid is more rational roots theorem than a third order differential equation lmao
@justanything34955 жыл бұрын
Please increase your video quality
@AB-gu9ui5 жыл бұрын
whats wrong with it
@FaranAiki2 жыл бұрын
Please be concise and precise, Prince.
@sugarfrosted20056 жыл бұрын
I hate that tabular long division thing. It's gross and is extra garbage to remember.
@John-lf3xf6 жыл бұрын
sugarfrosted it's fucking precalculus lmao
@John-lf3xf5 жыл бұрын
Erik Awwad Yea but this is taught in a standard precalculus course.
@John-lf3xf5 жыл бұрын
Erik Awwad I Live in Silicon Valley. This Algebra is taught in precalculus
@tıbhendese4 жыл бұрын
0:01 -- 0:02 what
@venkatesanmunusamy73196 жыл бұрын
GREAT
@nerdymathematicianАй бұрын
💓💓💓
@cevan2116 Жыл бұрын
good sht
@maxwarnke72125 жыл бұрын
hes a genius and a flexer
@nikhilnirmal77726 жыл бұрын
Please send me answer of this y^8-36y^6+126y^4-84y^2+9=0
@michaelmalutshi36134 жыл бұрын
Let y^2=x. And solve the quartic equation.
@LazyMan14535 жыл бұрын
TWO!
@erniez72595 жыл бұрын
Forgot to have general son. Have x in front of c2 and vice versa