How to solve hard integrals using just u-substitution

  Рет қаралды 51,263

bprp calculus basics

bprp calculus basics

Күн бұрын

Пікірлер
@hannakrupowiecka6311
@hannakrupowiecka6311 3 жыл бұрын
Factor the "not" before the integral and you're left with (not ∫fair dx), and the inner integral is fair.
@herbie_the_hillbillie_goat
@herbie_the_hillbillie_goat 3 жыл бұрын
First I chuckled at this. Then I realized that's pretty much what he did. 😂😂
@LS-Moto
@LS-Moto 3 жыл бұрын
You know a teacher is a good teacher by being honest and openly saying that they couldn't figure it out, and had to look at the solution.
@bprpcalculusbasics
@bprpcalculusbasics 3 жыл бұрын
😆
@bprpcalculusbasics
@bprpcalculusbasics 3 жыл бұрын
Or admits he uses Wolframalpha too hahah
@sooryanarayana3929
@sooryanarayana3929 3 жыл бұрын
@@bprpcalculusbasics or the teachers watches bprp
@gamingresumed1788
@gamingresumed1788 3 жыл бұрын
@@sooryanarayana3929 The teacher is bprp
@tonyhaddad1394
@tonyhaddad1394 3 жыл бұрын
@@bprpcalculusbasics if we dont be honest with our self , we can t get better , specialy when we talk about the language of the universe (math) !!
@mrkenzivedran
@mrkenzivedran 3 жыл бұрын
For the first integral, you can use the following two subs: the first one is x=sqrt(tan(u)), after which you use sin(u)=z. You will get a result containing sin(arctan(u*u)), and you can always use the basic trigonometric identity to convert that into a more elegant form. If you're interested, I can show you exactly what I did that worked beautifully.
@somasahu1234
@somasahu1234 3 жыл бұрын
Yep, show it!
@fredericchopin6445
@fredericchopin6445 3 жыл бұрын
yes, please show it
@mrkenzivedran
@mrkenzivedran 3 жыл бұрын
@@somasahu1234 if you’re interested in the answer, please check your e-mail inbox, I sent it there because youtube doesn’t let me post links in the comments section
@mrkenzivedran
@mrkenzivedran 3 жыл бұрын
@@fredericchopin6445 if you’re interested, please provide me with an e-mail so that I can send you what I’ve done, because youtube doesn’t allow posting links or pictures in the comments section. I think you can do so by typing it out with spaces between each symbol of the e-mail.
@Nxck2440
@Nxck2440 3 жыл бұрын
@@fredericchopin6445 Let x^2 = tan u --> 2x dx = sec^2 u du --> dx = (sec^2 u) / (2 tan^(1/2) u) du The integral becomes = 1/2 * integral of (sec^2 u * tan^(-1/2) u) / (tan u * sec^(3/2) u) du = 1/2 * integral of (sec^(1/2) u) / (tan^(3/2) u) du = 1/2 * integral of cos u * sin^(-3/2) u du Let t = sin u --> dt = cos u = 1/2 * integral of t^(-3/2) dt = -1 * t^(-1/2) + C = -1 * sin^(-1/2) u + C = -1 * (sin arctan x^2)^(-1/2) + C Use a triangle to figure this out = -1 * (x^2 / sqrt(1 + x^4))^(-1/2) + C = -sqrt(1 + x^4) / x + C Could also have used the hyperbolic version i.e. let x^2 = sinh u.
@kobethebeefinmathworld953
@kobethebeefinmathworld953 3 жыл бұрын
Problem 1: u-sub in a special way Problem 2: u-sub in a more special way
@bprpcalculusbasics
@bprpcalculusbasics 3 жыл бұрын
Yup just that!
@davidbrisbane7206
@davidbrisbane7206 3 жыл бұрын
I imagined pausing the video and solving the problem and then continued watching
@jehmarxx
@jehmarxx 3 жыл бұрын
The U world is like school. You have to find a way to get into one and then get out of it afterwards. Lololol.
@piratekingluffy6430
@piratekingluffy6430 3 жыл бұрын
For the second integral, u can try by taking u=x^3+1 and factor out x^6+x^3 into (x^3+1)(x^2)(x). I thought it might be complicated but it turned out simple. Then after another substitution i got the same answer.
@robertveith6383
@robertveith6383 3 жыл бұрын
That is "you can try ... " You spell out "you," and "u" is a variable.
@sergeiivanov5739
@sergeiivanov5739 3 жыл бұрын
But... For some reason, i didn't notice this. Both integrals are solvable. The 1st is by x = 1/t, and the 2nd by t = x^3 + 1 as you have figured out. Sadly, the 2nd integral was solved by multiple substitutions. Namely, i noticed that if q = x^3 + 2, then the whole integral is a sum of integrals (q^(2 + 1/3)dx - 3q^(1 + 1/3)dx + 2q^(1/3)dx). Here we must notice recursion q^(n + 1/3)dx = x(x^3 + 2)/(3n+2) + [(6n+2)/(3n+2)] * q^(n-1+1/3)dx. So, we must solve the last Integral (x^3 + 2)^(1/3)dx and the initial Integral is a sum of three aforementioned integrals. We start by putting p^3 = x^3 + 2, after which we get cycle integral, denoted by I, which is the of p^3 / (p^3 - 2)^(2/3) wrt p. Next, by integration by parts we have an equality I = p(p^3 - 2)^(1/3) - A where A is the integral of (p^3 - 2)^(1/3). The initial integral can be also represented as a sum of A and 2B, viz. I = A + 2B where B is the integral of 1/(p^3 - 2)^(2/3). This is by representing p^3 as p^3 - 2 + 2. Thus, I = p(p^3 - 2)^(1/3) - A = A + 2B. Hence, the problem has been boiled down to determining B. To solve B, i put p^3 - 2 = 1/t and got an Integral which was rationalized by (2t + 1)^2 = u^6, and i had to evaluate (-2du)/((u^3 - 1)^2) which is solved by method of unknown coefficients. Notice that the integral of f(u) /(u^2 + u + 1)^2 is solvable by lowering the power of denominator and then by integration by parts. Here i am lazy cuz the point has been determined. The Integral of this rational function is evaluable. Recursive expression occurs there. So, once we find the answer in terms of u, it can be expressed through x, in terms of x, by plugging inverse substitutions u = (2t + 1)^(1/3) and t = 1/(p^3 - 2). And lastly, p = (x^3 + 2)^(1/3). So, idk
@sergeiivanov5739
@sergeiivanov5739 3 жыл бұрын
So, simple and so difficult at the same time. Probably, we can see from where Chebychev theorem comes. We inspect x^m (a+bx^n) ^ p and play with the integrand. And upon opting for some substitution, this gets evaluated. Interesting but too lazy
@holyshit922
@holyshit922 3 жыл бұрын
Integrals of the function in the form x^m(a+bx^n)^p , m,n,p \in Q There are three cases and there is substitution for each cases case 1: p\in Z u^{s} = x , where s = lcm(denominator(m),denominator(n)) case 2: (m+1)/n \in Z u^{s} = (a+bx^n) , where s = denominator(p) case 3: (m+1)/n + p \in Z u^{s} = (b+a/x^n) , where s = denominator(p) For the second integral is also possible integration by parts
@MrJoshie333_
@MrJoshie333_ 3 жыл бұрын
What
@holyshit922
@holyshit922 3 жыл бұрын
@@MrJoshie333_ They dont teach you this substitutions
@MrJoshie333_
@MrJoshie333_ 3 жыл бұрын
@@holyshit922 Clearly lol
@holyshit922
@holyshit922 3 жыл бұрын
@@MrJoshie333_ They work, check it Anshuman Agrawal also mentioned this types of integrals but didn't show substitutions for all possible cases
@MrJoshie333_
@MrJoshie333_ 3 жыл бұрын
@@holyshit922 ah okay thanks. Just curious, which Calc class does one learn this? I've done Calc 1-3 but haven't seen this kind of advanced substitution
@anshumanagrawal346
@anshumanagrawal346 3 жыл бұрын
The first one isn't hard if you're taught that kind of integral, it is of the form x^n(ax^m+b)^p where (n+1)/m + p turns out be an integer so you know that if you factor out an x^m from that and substitute it will become solvable easily
@replicaacliper
@replicaacliper 3 жыл бұрын
Nothing is hard if you've seen it before
@SJrad
@SJrad 3 жыл бұрын
After the integral in the 2nd problem, would it be better to simplify the cube root by separating that binomial to a 4th power into 2 separate binomials with one being to the 3rd power and the other to the first, and then move the one with the third power outside the cube root. And also factor out a x^3 from the binomials and take it outside as well
@sandeepchauhan7596
@sandeepchauhan7596 2 жыл бұрын
that 1st integral is in our NCERT 12th mathematics book (miscellaneous exercise)
@yoav613
@yoav613 3 жыл бұрын
I can give you more. Try integral lnx x^(1/6)/(1-x^2) from 0 to inf
@insayno9959
@insayno9959 3 жыл бұрын
(pi^2)(sqrt3-2)
@yoav613
@yoav613 3 жыл бұрын
@@insayno9959 yes wolfram helps.full sol please😅
@rogerkearns8094
@rogerkearns8094 3 жыл бұрын
@@yoav613 Yes, I have elbows, how did you know?
@yoav613
@yoav613 3 жыл бұрын
@@rogerkearns8094 there is nice sol using digamma function
@rogerkearns8094
@rogerkearns8094 3 жыл бұрын
@@yoav613 Ok ;)
@polychromaa
@polychromaa 3 жыл бұрын
Where can i find more integrals like these? I often struggle to find gems like these online.
@winter_c
@winter_c 3 жыл бұрын
Theoretically,learning only integration by substitution can solve these two questions. But I beg only very very few people can actually think out of the box like that.
@anshumanagrawal346
@anshumanagrawal346 3 жыл бұрын
I'm so proud I figured out both of them 😊
@tintinfan007
@tintinfan007 3 жыл бұрын
ME TOO
@camelliascholl6564
@camelliascholl6564 3 жыл бұрын
me 3 days ago: damn my calc final couldn't have been much worse me right now, 2 seconds into this video: never mind, my calc final could have been loads worse
@tambuwalmathsclass
@tambuwalmathsclass 3 жыл бұрын
The Father of modern calculus
@Vladimir_Pavlov
@Vladimir_Pavlov 3 жыл бұрын
You should write (∜x^4)^3 = |x|^3. In order to reveal the sign of the absolute value, it is formally necessary to consider two cases: x>0 and x < 0. As a result, the answer received by the author will be multiplied by sgn(x): -sgn(x)*∜(1+x^(-4)) +C.
@violintegral
@violintegral 3 жыл бұрын
This absolute value issue can be resolved more nicely by simply multiplying the (1+x^-4)^(1/4) by 1 of the form x/x. The x in the numerator can become (x⁴)^(1/4), which multiplies with (1+x^-4)^(1/4) to give (x⁴+1)^(1/4). This gives a simplified antiderivative of (x⁴+1)^(1/4)/x+C, which is equivalent to yours using sgn(x). If you realize that the integrand is an even function before integration, it stands to reason that the antiderivative will be odd (with the appropriate constant of integration, in this case, C=0). Looking at the parity of the integrand compared with that of the antiderivative can be a good way to check that your antiderivative is reasonable.
@loich.9133
@loich.9133 3 жыл бұрын
can you do the integral of 1/(x^5)+1 ?
@antoine2571
@antoine2571 3 жыл бұрын
i'm in high school, i didn't see integrals and i'm loving it
@tonyhaddad1394
@tonyhaddad1394 3 жыл бұрын
Deja vu 😁 since a wihle on one of your channel , i learned some deep sens from these intgrale
@sybot.
@sybot. 2 жыл бұрын
1/2* NOT FAIR^2 + C
@dominicgrew4000
@dominicgrew4000 3 жыл бұрын
I recommend trying this integral! x(sin(x))/(cos^2x)+1 dx. Note cos^2x is cosine squared of x.
@robertveith6383
@robertveith6383 3 жыл бұрын
Then you should write cos^2(x). If the denominator is supposed to be cos^2(x) + 1, then you need grouping symbols around it.
@violintegral
@violintegral 3 жыл бұрын
I'm not 100% sure what function you mean to integrate because of your lack of grouping using brackets or parentheses, but x•sin(x)/(cos²(x)+1) certainly does not have an elementary antiderivative. However, the definite integral of that function from 0 to π can be found without too much trouble by use of symmetry.
@Alians0108
@Alians0108 3 жыл бұрын
xsinx ---------------- cos^2(x)+1
@laurence090
@laurence090 3 жыл бұрын
what happened to the numerator’s role in the final index/power/exponent law simplification? of the u-sub in the first problem •_O
@AtariDays80
@AtariDays80 3 жыл бұрын
Side question: Is u-substitution still valid at x=0? At that point, u-du is dividing by zero.
@沈博智-x5y
@沈博智-x5y 3 жыл бұрын
short answer is: it still seems to be valid, however for the first integral, the domain of the integral did not include x = 0 for the second integral, this may be why people prefer to fudge around with the integrand rather than make dx the subject when they find du/dx so that they "avoid dividing by zero". for example in his substitution, u = x^6 + 2x^3 then: u = x^6 + 2x^3 du/dx = 6x^5 + 6x^2 du = (6x^5+6x^2)dx du = 6(x^5+x^2)dx integral of (x^6+x^3)cbrt((x^3+2)) dx = integral of x(x^5+x^2)cbrt(x^3+2) = 1/6 integral of 6(x^5+x^2)cbrt(x^3(x^3+2)) dx = 1/6 integral of cbrt(x^3(x^3+2))(6)(x^5+x^2)dx = 1/6 integral of cbrt(x^6+2x^3)(6)(x^5+x^2) dx = 1/6 integral of cbrt(u)du = (1/(4/3))ucbrt(u)/6 + c = (1/(4/3))(x^6+2x^3)cbrt(x^6+2x^3)/6 + c = x^3(x^3+2)cbrt(x^3(x^3+2))/8 + c = x^4(x^3+2)cbrt(x^3+2)/8 + c but you still end up with the same answer regardless. it may have to do with limits tending to zero. also, the second integral seems to divide by zero when x = -cbrt(2) as well. as 6(x^5+x^2) = 0 iff x^5+x^2 = 0 iff x^2(x^3+2) = 0 iff x = 0 or x = -cbrt(2) provided x is real.
@Ashirene22
@Ashirene22 3 жыл бұрын
Isnt the first chebyshev?
@sg8119
@sg8119 3 жыл бұрын
It's actually not hard at all use trigonometric substitution by putting in x=rt tan u then just simplify to get du in terms of dx
@cormalan9894
@cormalan9894 3 жыл бұрын
The answer to the one in the title is NOTFAIRX by the way
@eepym1tu
@eepym1tu 3 жыл бұрын
+ C
@cormalan9894
@cormalan9894 3 жыл бұрын
@@eepym1tu how did I forget smh
@ammyvl1
@ammyvl1 3 жыл бұрын
shame on you
@teelo12000
@teelo12000 3 жыл бұрын
4:50 trollmath: yeah but you can simplify that further, the fourth root of 1 is 1, and the fourth root of x^-4 is x^-1, so the answer is -(1 + x^-1), = -1 - 1/x
@dlevi67
@dlevi67 3 жыл бұрын
More trollmath at the end: just eliminate a power of 3 from the exponents, since there is a cube root: 1/8 (x^2+ 2x)^4, which trobviously simplifies into 1/8 (x^8 +16x^4) = x^8/8 + 2x^4. Oh, plus C.
@yoav613
@yoav613 3 жыл бұрын
Integral (not fair)=it is going to be on the test
@ysmashimaro
@ysmashimaro 3 жыл бұрын
x^4^3^(1/4) should be |x|^3 instead of x^3, right?
@Vibranium375
@Vibranium375 3 жыл бұрын
Yes
@tintinfan007
@tintinfan007 3 жыл бұрын
NICE POKEBALL DUSTER
@ussgordoncaptain
@ussgordoncaptain 3 жыл бұрын
Man I tried to find the u sub for (1+x^4)^(1/4) for the first one
@pneujai
@pneujai 3 жыл бұрын
the second one is easier than the first one i would say
@ILoveMaths07
@ILoveMaths07 3 жыл бұрын
Beautiful!
@Kazzit_Chang
@Kazzit_Chang 3 жыл бұрын
I have reading disability so I use inline substitution all the time.
@_Cake_progresS_
@_Cake_progresS_ 3 жыл бұрын
Fun fact : i not resolve the first but I resolve the second L.
@KinderHades
@KinderHades 3 жыл бұрын
This video shows how little I actually understand about calculus. Looks like I need some practice
@gamingmusicandjokesandabit1240
@gamingmusicandjokesandabit1240 3 жыл бұрын
*haters will say that all integrals are unfair to your free/lesiure time*
@pradyumangangan4784
@pradyumangangan4784 3 жыл бұрын
Why is this integral unfair?🤔
@hyx6817
@hyx6817 3 жыл бұрын
thanks
@hatembahri4314
@hatembahri4314 3 жыл бұрын
integrals🤩🤩
@chriskim7261
@chriskim7261 3 жыл бұрын
he is pokemon master
@Аноним-щ3н
@Аноним-щ3н 3 жыл бұрын
Omg, why are you so emotional
@bprpcalculusbasics
@bprpcalculusbasics 3 жыл бұрын
@mrflibble5717
@mrflibble5717 3 жыл бұрын
Nice!
@buckeye49
@buckeye49 3 жыл бұрын
notfairx + C
@nate0___
@nate0___ 3 жыл бұрын
I managed to understand this even though I am 13 lol
@mrocto329
@mrocto329 3 жыл бұрын
nothing special, the real pain is AFTER calculus where you get much more abstract
@tonyhaddad1394
@tonyhaddad1394 3 жыл бұрын
Channel(s)*
@mace6402
@mace6402 3 жыл бұрын
Thats wrong tho
@pablo2448
@pablo2448 3 жыл бұрын
What the heck
Integrate x^-x dx
20:37
Prime Newtons
Рет қаралды 141 М.
so you want a HARD integral from the Berkeley Math Tournament
22:28
blackpenredpen
Рет қаралды 567 М.
She made herself an ear of corn from his marmalade candies🌽🌽🌽
00:38
Valja & Maxim Family
Рет қаралды 18 МЛН
Мясо вегана? 🧐 @Whatthefshow
01:01
История одного вокалиста
Рет қаралды 7 МЛН
BAYGUYSTAN | 1 СЕРИЯ | bayGUYS
36:55
bayGUYS
Рет қаралды 1,9 МЛН
It’s all not real
00:15
V.A. show / Магика
Рет қаралды 20 МЛН
How to Integrate Using U-Substitution (NancyPi)
25:48
NancyPi
Рет қаралды 2,1 МЛН
finding the derivative from an integral equation
6:11
bprp calculus basics
Рет қаралды 20 М.
Legendary test question - π is less than 22/7
5:44
MindYourDecisions
Рет қаралды 1,7 МЛН
Use Calculus, NOT Algebra
5:19
bprp calculus basics
Рет қаралды 136 М.
how to solve these HARD integrals
9:45
blackpenredpen
Рет қаралды 127 М.
how Laplace solved the Gaussian integral
15:01
blackpenredpen
Рет қаралды 763 М.
integral of sin(x)/x from 0 to inf by Feynman's Technique
22:44
blackpenredpen
Рет қаралды 1,2 МЛН
Integrate 1/(1+x^3)
24:56
Prime Newtons
Рет қаралды 97 М.
Why I don't teach LIATE (integration by parts trick)
14:54
blackpenredpen
Рет қаралды 355 М.
She made herself an ear of corn from his marmalade candies🌽🌽🌽
00:38
Valja & Maxim Family
Рет қаралды 18 МЛН