How to train a GAN, NIPS 2016 | Soumith Chintala, Facebook AI Research

  Рет қаралды 9,367

Preserve Knowledge

Preserve Knowledge

Күн бұрын

Пікірлер
@noirmist3777
@noirmist3777 5 жыл бұрын
1. Normalize the input [-1.+1] 2. Modified Loss function :min(log(1-D) to max(D) 3. Use Spherical Z rather than Uniform one - Sampling Generative Networks 4. Do not mix Real and Fake data by BatchNorm 5. Avoid Sparse Gradients (ReLU to Leaky ReLU, Maxpool to Average Pool 6. Label Smoothing 7. DCGANS/Hybrid models (KL + GAN, VAE+GAN) 8. Use RL stochastic tricks 9. ADAM 10. Trank Failure early- check loss
@vkvaibhavkumarvk
@vkvaibhavkumarvk 5 жыл бұрын
github.com/soumith/ganhacks
@FireSonix
@FireSonix 5 жыл бұрын
For those strangers who wanna go a little further: 11. Don't balance via loss statistics (Do not use D/G Losses for any hyperparameter tuning) 12. If you have labels, use them (Use Additional information from labels, e.g. in AC-GAN. CGAN etc) 13. Add noise to inputs, decay over time 14. Train discriminator more, sometimes 15. Batch Discrimination 16. Discrete Variable (Use additional information other than labels)
@iansullivan8
@iansullivan8 7 жыл бұрын
'things are fucking up' , I like that
Introduction to GANs, NIPS 2016 | Ian Goodfellow, OpenAI
31:25
Preserve Knowledge
Рет қаралды 153 М.
Generative Adversarial Networks (GANs) - Computerphile
21:21
Computerphile
Рет қаралды 652 М.
СИНИЙ ИНЕЙ УЖЕ ВЫШЕЛ!❄️
01:01
DO$HIK
Рет қаралды 3,3 МЛН
VIP ACCESS
00:47
Natan por Aí
Рет қаралды 30 МЛН
Mom Hack for Cooking Solo with a Little One! 🍳👶
00:15
5-Minute Crafts HOUSE
Рет қаралды 23 МЛН
Open Source AI is AI we can Trust - with Soumith Chintala of Meta AI
1:37:38
Ian Goodfellow: Generative Adversarial Networks (NIPS 2016 tutorial)
1:55:54
Steven Van Vaerenbergh
Рет қаралды 132 М.
The Math Behind Generative Adversarial Networks Clearly Explained!
17:04
Editing Faces using Artificial Intelligence
25:27
Arxiv Insights
Рет қаралды 372 М.
Generative AI in a Nutshell - how to survive and thrive in the age of AI
17:57
From Deep Learning of Disentangled Representations to Higher-level Cognition
1:17:05