The only sneaky substitution I know is replacing a mic with a pokéball
@rzno34144 жыл бұрын
You win the comment section
@aravinds38464 жыл бұрын
Lol
@BlokenArrow4 жыл бұрын
Or replacing a politician with a paramecium. Same level of intelligence.
@heydilanschuastedopinho66824 жыл бұрын
Minor mistake: t=tan(x/2), not arctan, so the -1 above the tan on the final answer is a mistake. Apart from it, perfect video as aways.
@blackpenredpen4 жыл бұрын
Integral of 1/(2+cos(x)), kzbin.info/www/bejne/rJaYY2qojs6Mmrc My "FAST" channel: kzbin.info/www/bejne/iKPLk4pvoLibe7c
@drenzine4 жыл бұрын
"is t=tan(x/2) obvious to you?" No what da hec is that
@drenzine4 жыл бұрын
Wow, i got hearted, thanks so much! Math is amazing just pointing that out
@noahtaul4 жыл бұрын
Totes unrelated, but in the class I TAd for, the students misheard the teacher call this “tricky substitution” so they called it “kinky substitution” and I didn’t want to correct them
@swift35644 жыл бұрын
Weierstrass sub is my favorite!
@SidneySilvaCarnavaleney4 жыл бұрын
Prezados nobres amigos(as), professores,(as),alunos(as), com meu respeito a todos aqui presente, estou enviando minha "Tese" para a apreciação de todos; que pi é Racional e Irreversível, (3,15), nesta minha "Tese" tem um fator muito importante a ser respeitado, Não pode ser simplificado, Não pode ser arredondado, não pode ser aproximado, não pode ser fatorado, tem que ser exato para os cálculos do Universo da Matemática, o autor Sr Sidney Silva. www.portaldoslivreiros.com.br/livro.asp?codigo=4410831&titulo=A+Ousadia+do+Pi++Ser+Racional : www.estantevirtual.com.br/mod_perl/info.cgi?livro=2655536635 aeditora.com.br/produto/a-ousadia-do-%cf%80-ser-racional/ www.amazon.com.br/dp/655861281X?ref=myi_title_dp aeditora.com.br/produto/a-ousadia-do-%cf%80-ser-racional/ Onde encontrar minha obra, segue os links acima em epígrafe, e adquirir uma obra onde sua leitura é bem simples e objetiva provando a Racionalidade de Pi, para saber se é Racional ou não, compre minha obra, gratidão sempre o autor Sr Sidney Silva.
@hassanniaz75834 жыл бұрын
Same here. I learned it recently and love this technique
@GaryTugan4 жыл бұрын
At the end... t = tan (x/2), right? Not inv tan 😃👍
@blackpenredpen4 жыл бұрын
Yes, it was my mistake and my edit didn’t show up.
@GaryTugan4 жыл бұрын
@@blackpenredpen still an awesome vid :) Cool beard too! (Haven’t seen your vids in awhile even tho I have full notifications on)
@j100013 жыл бұрын
Can you pin Gary’s comment for future viewers to see first?
@andreumora28784 жыл бұрын
The result shouldn’t be: ln/tg(x/2)/ instead of inverse tg?
@blackpenredpen4 жыл бұрын
Oh man, I edited that part but my little annotation didn’t come up to block the -1. Thanks for pointing out.
@andreumora28784 жыл бұрын
@@blackpenredpen i thought that,anyway, really good content as always
@orenfivel62474 жыл бұрын
@@blackpenredpen The sneakiest -1 ever LOL GOOD VIDEO
@dealva20354 жыл бұрын
@@orenfivel6247 haha.. when i watch it, i got stunned for sec bcz -1 . like, where it come from
@natasha_georgieva4 жыл бұрын
Weierstrass Sub was in fact invented by Euler, almost 100 years earlier. As usual, "no scientific discovery is named after its original discoverer". Stigler's law of eponymy (applicable to itself). Spivak is all the more superfluous here ))
@jrtrct90974 жыл бұрын
Having not done any research at all, I suspect that this is yet another case of "Euler discovered so many things that we have to name it after the next person to discover it."
@DavesMathVideos4 жыл бұрын
Euler already had a substitution technique named after him. Namely, one which simplifies integrals of certain quadratics.
@angelmendez-rivera3513 жыл бұрын
@@jrtrct9097 Haha, yes
@quercus_opuntia4 жыл бұрын
I'm only in Calc 1 and even though most parts of your videos are confusing as of now I still love watching
@aniruddhaghosh47934 жыл бұрын
Studied this in the calculus book by I A Maron during 12th grade, it's referred to as the "universal substitution" in there.
@jkid11344 жыл бұрын
I just saw this same (x^2+y^2)/xy idea in some completely unrelated algebra video, neat to see again.
@robsbackyardastrophotograp88854 жыл бұрын
This must have been the video you mentioned live last night! So gonna use this method from now on- thanks!
@monoastro4 жыл бұрын
inb4 thousands of comments ask about the inverse tangent in the last step
@hesp99424 жыл бұрын
This is the first time I've seen something like this; I'll probably end up using that substitution way too often just because it's possible
@hassanniaz75834 жыл бұрын
In Pakistan, along with sin x, cos x, dx we also use tan x= 2t/(1-(t^2)) quick proof: tan x = tan (2*x/2) = 2 tan (x/2)/(1-(tan x/2)^2) by double angle property ☝ = 2t/(1-(t^2)) since t=tan x/2 Edit: it was a slight error of signs
@damianbla44694 жыл бұрын
You could also do this that way: tan(x) = sin(x) / cos(x) = = [2t / (1 + t^2)] / [(1 - t^2) / (1 + t^2)] = 2t / (1 - t^2)
@hassanniaz75834 жыл бұрын
@@damianbla4469 Yeah it's a good approach
@jackychanmaths4 жыл бұрын
You can use the substitution u=cos 2x to integrate csc 2x without anything related to Weierstrass substitution Also, I prefer using identities instead of drawing right-angled triangles to find other trigonometric function values to ensure that the signs of the values are correct and to make the solution very much more formal
@stevemonkey66664 жыл бұрын
I like the passion you display here 👍
@tahabukhari31892 жыл бұрын
I think that we use tan(x/2) because: Firstly, it is the only trigonometric function, other than cotx, with an infinite range (from minus infinity to positive infinity). Secondly, tangent is periodic with a period of pi. So the derivation of the standard Weirstrass formulae, that you derived in an older video, using a right angle triangle, "x/2" can range from 0 to pi and hence tan(x/2) with cover all the possible values for the substitution 't' and hence doesn't restrict the domain of the integral. This is what I think but if I have made a mistake then please do correct me. Thank you.
@Awkwkwks4 жыл бұрын
That sneaky inverse tangent at the end
@AstroB74 жыл бұрын
I love the chen lu ! It’s my life :)
@mathswithmartin67084 жыл бұрын
Literally just taught this topic to my class; I’ll be sending them the link 👍
@shiina_mahiru_90674 жыл бұрын
I think of it as sort of an inverse of the trig sub. In trig sub, you sub a variable with a trig function. For Weierstrass sub, you sub a trig function with a "polynomial" (or rational function, to be precise). If you are a good observer, you might see that under the Weierstrass sub, the formula of sin and cos are precisely the "standard" rational parametrization of the unit circle, and I guess Weierstrass saw the connection between it and the double angle formula., somehow
@ralfbodemann1542 Жыл бұрын
This is one of the best presumptions how Weierstrass may have come to the idea of his really weird substitution I've ever heard or read!
@rezamiau4 жыл бұрын
I think this channel is way better than the other, by the way this method was great. And if you notice, you should probably see the inverse sign, in your final answer, which is wrong.
@drv2554 жыл бұрын
Just use cos(2f) = (1 -tan²(f))/ (1+ tan²(f)) then simplify and use 1 + tan²(f) = sec²(f) in numerator.
@andreacosta22384 жыл бұрын
So you did make it grow in the end, good job.
@ripudamansingh24 жыл бұрын
Bruh, I thought this was a standard substitution taught everywhere. I didn't know it had a special name.
@GaussianEntity4 жыл бұрын
It has the same energy as sin(x) = x for small x
@jamescollier34 жыл бұрын
Philly steak and cheese is my favourite sub
@aradhya_purohit4 жыл бұрын
Priceless
@Maou34 жыл бұрын
I think the intuition for this substitution comes from a combination of tricky trig identities. 1/(2+cosx) = sec^2(x/2)/(tan^2(x/2)+3) Then, the substitution of tan(x/2) is obvious.
@MichaelRothwell14 жыл бұрын
Yes, if you substitute cosx=1-2sin^2(x/2) to get denominator 3-2sin^2(x/2) then divide top & bottom by cos^2(x/2) to get denominator 3sec^2(x/2)-2tan^2(x/2) and finally use sec^2(x/2)=1+tan^2(x/2).
@MichaelRothwell14 жыл бұрын
Here is an alternative method, which easily generalises to any 1/(a+bcosx): in the denominator, substitute 2=2(cos²(x/2)+sin²(x/2)), cos(x)=cos²(x/2)-sin²(x/2), so 2+cosx=3cos²(x/2)+sin²(x/2), then divide top and bottom by cos²(x/2). I prefer this method because we immediately replace each term in the denominator by a homogenous quadratic expression in cos(x/2) and sin(x/2), so when we divide top and bottom we are guaranteed to get and expression in tan(x/2) in the denominator, and of course sec²(x/2) in the numerator, which is essentially the derivative of tan(x/2).
@usernameisamyth3 жыл бұрын
Mom : Coffee? Me : 9:56 ?
@earnstein76074 жыл бұрын
Thanks. Brilliant has been so useful ♥️
@ApplePotato3 жыл бұрын
This is just reverse of trig substitution. But I think the trickiest part is to realize you need to use t = tan(x/2) instead of t = tan(x). This is because t = tan(x/2) eliminates the radicals from sin(x) cos(x) and makes t continuous on interval (-Pi, Pi).
@NadiehFan2 жыл бұрын
Sure. But when your integrand is a rational function of *even* powers of sine and cosine it is often easier to use t = tan(x).
@tacheboy3 жыл бұрын
12:55 should be tan(x/2) I think?? pls tell
@pixoncillo14 жыл бұрын
Ah, Calculus by Spivak, what a beautiful read.
@alxjones4 жыл бұрын
If you haven't, read his sequel, Calculus on Manifolds! One of my favorite texts of all time.
@mahmoudaboualfa51364 жыл бұрын
We took it last year. But we called it Bioche General (BG). If the first three rules (B1, B2, B3) didn't work, then we take t=tan(x/2) and do the calculations.
@MichaelRothwell14 жыл бұрын
What are the first three?
@mahmoudaboualfa51364 жыл бұрын
@@MichaelRothwell1 For integral f(x) dx (for trigonometric integrals) B1: substitution of x by pi-x (II quadrant) d(pi-x)=-dx If f(pi-x) d(pi-x)=f(x) dx (Doesn't change sign) Then t=cos(x) B2: substitution of x by pi+x (III quadrant) d(pi+x)=dx If f(pi+x) d(pi+x)=f(x) dx (Doesn't change sign) Then t=sinx B3: substitution of x by -x (IV quadrant) d(-x)=-dx If f(-x) d(-x)=f(x) dx (Doesn't change sign) Then t=tanx If else fails, then BG: t=tan(x/2) You have to know all of the trigonometric relations in all quadrants and their signs (positive or negative). If one of them works, then you can substitute t by its corresponding relation, then solve the integral and reintroduce the relation that has x to get the final result. Hope this helped.
@holyshit9224 жыл бұрын
This substitution is closely related with Euler's substitution Assume that x is in first quadrant From Pythagorean identity we have sin^2x=1-cos^2x On the right hand side we have difference of two squares which will be useful From the Euler substitution (with the roots) we have sqrt(1-cos^2(x))=(1+cos(x))t With assumption that x is in first quadrant (for sign) and with Pythagorean identity we have sin(x)=(1+cos(x))t
@holyshit9222 жыл бұрын
We know that tan(a) is the slope of the line and if we find slope of angle bisector we will express tan(a/2) with sine and cosine How we find angle bisector ? There are few ways f.e. we can follow the construction Lets remind steps of construction Assume that vertex of the angle is A 1. On the one of the rays we choose point D 2. We draw the arc from A with radius AD until it cross the other ray of he angle and name that point E Now we have isosceles triangle ADE If we draw perpendicular bisector of DE it will also pass through the vertex A because ADE is isosceles This perpendicular bisector will divide isosceles triangle ADE to two congruent right triangles ADM , AEM Assume that we have given equations of the lines which contain rays of an angle sin(a)x - cos(a)y=0 y = 0 Assume that vertex of the angle is A = (0,0) Lets choose point D = (1,sin(a)/cos(a)) Radius |AD| = sqrt((1-0)^2+(sin(a)/cos(a))^2) |AD|=sqrt(1+sin^2(a)/cos^2(a)) |AD|=sqrt((cos^2(a)+sin^2(a))/cos^2(a)) |AD|=sqrt(1/cos^2(a)) |AD|=1/cos(a) x^2+y^2=1/cos^2(a) y=0 x^2=1/cos^2(a) Now we choose point E = (1/cos(a),0) Equation for line perpendicular to the line AB and passing through point C is y - yC = - (xB - xA)/(yB - yA)(x - xC) y = - (1/cos(a) - 1)/(0 - sin(a)/cos(a)) x y = - (1/cos(a) - 1)/(- sin(a)/cos(a)) x y = (1/cos(a) - 1)/( sin(a)/cos(a)) x y = (1/cos(a) - cos(a)/cos(a))/( sin(a)/cos(a)) x y = ((1 - cos(a))/cos(a))/( sin(a)/cos(a)) x y = ((1 - cos(a))/sin(a))x tan(a/2) = (1 - cos(a))/sin(a) so if we want to write this substitution with original cosines and sines we will have t = (1 - cos(x))/sin(x)
@kaurapriyanshu83703 жыл бұрын
Sir love from India 🇮🇳🇮🇳🇮🇳🇮🇳🇮🇳❤️💕❤️💕💗💐💐💐
@DavesMathVideos4 жыл бұрын
Ha, I just made a video about this a few days ago! The way I see it is that if you have a function of f(sin(x), cos(x)) we can thing of this as some function that is parameterized along the unit circle. By switching variables, you are essentially transforming the function into something more managable! kzbin.info/www/bejne/nZWxlZuveNeZhM0
@JerrysPlace4 жыл бұрын
I saw your video. Explanation isn't bad but your sound quality isn't so good.
@DavesMathVideos4 жыл бұрын
@@JerrysPlace Yeah, I should really get a webcam and a mic. I was in the midst of setting up a place in my apartment where I could record live, but certain things.... happened. Besides that, my day job is actually teaching math and doing IT at a high school, so that keeps me pretty busy as well.
@carterwoodson88184 жыл бұрын
It is such a sneaky substitution very true!!
@theimmux30344 жыл бұрын
The return of the King
@kormosmate24 жыл бұрын
There is also a hyperbolic version of this.
@DarkOceanShark4 жыл бұрын
Would you mind sharing that version with me, please?
@kormosmate24 жыл бұрын
@@DarkOceanShark There's a seperate section for it on the wikipedia page of the topic. Although a little short, but basically it's almost the same, only the signs are different as with most hyperbolic identities. The derivation process is also almost the same. Just use the hyp.version of the identities shown in the video.
@DarkOceanShark4 жыл бұрын
@@kormosmate2 Thank you Mr. Kormos, that was helpful.
@leepeel65293 жыл бұрын
Man, the formulae on your tshirt are upside down. Awesome. Where can I buy such a thing?
@ahmadelsonbaty29224 жыл бұрын
In fact this strange substitution comes very naturally in studying the rational points on the unit circle.
@QwertyUiop-gv1dv4 жыл бұрын
This was a 12th grade example of our GHSEB textbook in India with same substitution 😀😀
@victorserras4 жыл бұрын
This result feels like you hacked mathematics
@peterchan60824 жыл бұрын
Got you again at 12:53 . . . while saying log[tan(x/2)] you wrote log[arctan(x/2)]
@blackpenredpen4 жыл бұрын
Yea. I actually edited it that’s why you saw a small jump cut there but my edit didn’t come up to block the -1 😆
@thomasblackwell95073 жыл бұрын
When do you know to use this substitution? For example it is rather obvious when to use a Trig. Sub. However, what are the indicators to use the Weierstrass substitution?
@ralfbodemann1542 Жыл бұрын
You can use the t-substitution whenever there is a linear combination of sine, cosine and a constant in the denominator, but no higher degrees of sine or cosine. When you want to integrate functions like 1/(5 + 3*cosx) or 1/(3-2*sinx), Weierstrass substitution will be a good choice. (Although there are other solutions paths. But once you understood and memorized the Weierstrass substitution formulae, this method is faster and more elegant.)
@evceteri4 жыл бұрын
I didnt notice the pokeball until the end of the video
@nimmira4 жыл бұрын
hmm why arctan at the end?
@blackpenredpen4 жыл бұрын
Sorry, it was a mistake.
@nimmira4 жыл бұрын
@@blackpenredpen :D phew! for a moment I thought I need to re-study all my calculus!
@fordtimelord86733 жыл бұрын
I think it would be very intuitive and instructive if you geometrically derived sin x and cos x in terms of T=tan x/2 on the unit circle.
@NadiehFan2 жыл бұрын
This is done in the Wikipedia article on the Weierstrass substitution. The straight line through (−1, 0) with slope t = tan ½φ, −½π < ½φ < ½π also intersects the unit circle in the point ((1−t²)/(1+t²), 2t/(1+t²)) as we can check by solving y = t(x + 1), x² + y² = 1 for x and y expressed in t. But it also clear from the inscribed angle theorem for a circle that the coordinates of the second point of intersection are (cos φ , sin φ) so we have cos φ = (1−t²)/(1+t²), sin φ = 2t/(1+t²). Furthermore we can see in the diagram that tan ½φ = (sin φ)/(1 + cos φ) = (1 − cos φ)/(sin φ) from which we can also express cos φ and sin φ in tan ½φ. In fact this is even easier since we only have to solve a linear system. To see this, put tan ½φ = t, sin φ = s, cos φ = c, then we have ts + c = 1, s − tc = t which is a linear system in s and c from which we get s = 2t/(1+t²), c = (1−t²)/(1+t²).
@rashmithmr11174 жыл бұрын
His chart is very helpful 😂😂
@shreyasparameshwaran54213 жыл бұрын
Do u know where we can get it???
@shreyasparameshwaran54213 жыл бұрын
Or is it available only in the vid
@bu47714 жыл бұрын
Thank you
@manosxa4 жыл бұрын
would you be able to solve exactly the d equation y ' ' = A*sqrt(1+y'(0)^2) for x Ε (0, L)
@angelmendez-rivera3513 жыл бұрын
The notation you are using to denote this equation is a little too confusing. Did you mean to write y''(x) = A·sqrt[1 + y'(x)^2], or did you actually mean to write y''(x) = A·sqrt[1 + y'(0)^2]? Because the answer to the question varies drastically between the two. Also, what does "x E (0, L)" mean? Does this mean "x is in the interval (0, L)"? If so, what is L, and what relevance does it have to the problem? These questions need to be answered before one can even attempt to solve the equation.
@ecavero13 жыл бұрын
The answer to the last integral is tangent; not inverse tangent!
@dovidglass54453 жыл бұрын
Shouldn't the thumbnail read t=tan(x/2)? At the moment it says t=sin(x/2).
@blackpenredpen3 жыл бұрын
U r right. Thanks!
@dovidglass54453 жыл бұрын
@@blackpenredpen You're welcome! :)
@jamesdiamond99074 жыл бұрын
Can you please make a video on rationalizing the denominator of (1/pi)? Cause if we multiply denominator and numinator by "pi", denominator is still irrational. Love from india❤
@blackpenredpen4 жыл бұрын
(pi)^-1
@angelmendez-rivera3513 жыл бұрын
1/π cannot be rationalized, because π is a transcendental constant.
@Dionisi04 жыл бұрын
Who is Chen Lu?
@mohitsingh47444 жыл бұрын
Hi, I have a question about Euler's method (for approximation). In our calculus class, we went over how we can divide it into steps, but these were all a finite number of steps. Is it possible to take an infinite number of steps by setting the number of steps = b and then setting lim b->infinity? Sorry if my vocab is bad I'm still a beginner in calculus but if you want elaboration please let me know!
@MichaelRothwell14 жыл бұрын
Yes, you can make the steps smaller and smaller and see where your answer is heading (if that is what you meant) . Calculus is all about handling the infinitely small by taking limits.
@mohitsingh47444 жыл бұрын
@@MichaelRothwell1 Thank you for your response! Do you know how I could actually apply this to a problem because I can't seem to find any examples online? I know that it is possible to just take the integral of the differential equation but I thought this method might be an alternative. Thank you again!
@MichaelRothwell14 жыл бұрын
@@mohitsingh4744 The method you suggest could work in theory, but I have never seen this method proposed or used. However, I believe you could use it to solve dy/dx=y.
@ZyroZoro3 жыл бұрын
This is so cool :O
@frozenmoon9984 жыл бұрын
I bet that guy was so sneaky, he substituted some single variable 5th grade equations to be equal to hard abstract algebra problems. In any event, bprp can make complicated people/problems look easy and enjoyable ^^
@shivansh6684 жыл бұрын
I heard about this first time 😐
@kabsantoor32514 жыл бұрын
Why is absolute value taken for log
@MichaelRothwell14 жыл бұрын
In case the argument is negative.
@ψωςεψωςε4 жыл бұрын
What is the difference between weierstrass sub and bioche sub
@defrom71472 жыл бұрын
Weiersstraas sub is one of the Bioche rules
@Iamnotyou294 жыл бұрын
Why that was tan-1???
@akotosiLord4 жыл бұрын
This is not connected in the video but, can you pls show the solution in find a,b, and c. a+b+c=12 abc=48
@novidsonmychanneljustcomme57534 жыл бұрын
If you want to get explicit numbers as a solution (with no variables left), you need a third independent equation expressing a relation between a, b and c. Otherwise it's not solvable.
@akotosiLord4 жыл бұрын
@@novidsonmychanneljustcomme5753 Hello, thank you for noticing. The third equation is ab+bc+ac=44 Can I solve it without transforming into a polynomial?
@novidsonmychanneljustcomme57534 жыл бұрын
@@akotosiLord Well OK, here we go: (x+a)*(x+b)*(x+c)=x^3+(a+b+c)*x^2+(ab+bc+ac)*x+abc -> The coefficients of this general 3rd degree polynomial do exactly have the form of your equations. So in other words, you can get a, b and c by finding the zeroes of the polynomial. In this case the polynomial would be x^2+12*x^2+44*x+48. By guessing you find that x1=2 and so you can do the polynomial division with (x+2). After that you get a quadratic polynomial which gives you the other zeroes x2=4 and x3=6. And these three zeroes are also the solutions for a, b and c. (The order doesn't matter because you only got addition and multiplication in your equations where you can change the order of the numbers within addition or multiplication as you like.) So in order to give an explicit answer to your question: The solutions to your system of equations are a=2, b=4 and c=6. (But it also could be like a=4, b=6 and c=2 and so on...)
@akotosiLord4 жыл бұрын
@@novidsonmychanneljustcomme5753 Hello, thank you for the solution but that is my original given. x³+12x²+44x+48 I am trying to solve for roots without using the usual way. I am finding a clue so that I can make a cubic formula for solving roots. P.S. I already found one but it is so long. I am trying to make a short and easy one
@novidsonmychanneljustcomme57534 жыл бұрын
@@akotosiLord Well OK, good luck then. ;-) The "long" formula you mentioned must be Cardano's method and besides this the polynomial division is the only other general way I know to solve problems like that. Not meant to offend you, but tbh I doubt that you will be able to find a shorter formula than Cardano's one. (When I used to read about all this a little more in detail I accepted for myself that this should be the simplest possible way.) There is still an approximation way called Newton's method which is applicable not only for this kind of functions, but the results will always stay approximations, no matter how often you iterate. And btw it is still possible to solve 4th degree polynomials in general (even though the formula gets even much more complicated than the one for 3rd degree), but from 5th degree on there is no general solution possible anymore.
@markpage27794 жыл бұрын
Brilliant :)
@laurentiusmichaelgeorge11184 жыл бұрын
Just misread the title as 'weirdass sub'. Probably have had a little bit too much of that GTA V meme.
@birdboat56474 жыл бұрын
I love SO(2) :)
@AhmadAhmad-qx6fp4 жыл бұрын
Weierstrass was also a lawyer... so in terms of being sneaky? Yeah! It follows naturally
@BalaMurugan-hk2gd4 жыл бұрын
Hey dude what's your name.your ideas are great i love you from India
@nic7414 жыл бұрын
How long do you think the cool beard’s going to grow?
@motekkz99974 жыл бұрын
Human brain is limitless wow
@oa2134 жыл бұрын
Legend
@aak-agami97343 жыл бұрын
Undo the chandu
@tomatrix75253 жыл бұрын
Bprp, you pronounce the W as a V since it is german...So it’s like ‘Veierstraß’
@blackpenredpen3 жыл бұрын
Oh?! I didn’t know!
@YKj31194 жыл бұрын
Could talk about argument of 0
@angelmendez-rivera3513 жыл бұрын
arg(0) is undefined.
@sirllamaiii97084 жыл бұрын
ayyy im early to my math lesson for once
@fatihsinanesen4 жыл бұрын
Hold on! A beard is talking.
@the_hasnat4 жыл бұрын
Assalmu Alaikum!
@rfzafar4 жыл бұрын
proof of fermats last theorem .......
@jomelherras89104 жыл бұрын
the beard thoooooo.
@nathannguyen74494 жыл бұрын
Nice
@Dionisi04 жыл бұрын
U made a mistake at the end bUddy
@theboss96004 жыл бұрын
Just 10 comments lol
@SuperOkitos4 жыл бұрын
Sos muy cra chino.
@66127704 жыл бұрын
Oopsy!
@johnwick59013 жыл бұрын
You definitely should shave
@sueyibaslanli35194 жыл бұрын
10th
@andrewli89014 жыл бұрын
6th
@duynguyencong69904 жыл бұрын
ho
@dilemmacubing4 жыл бұрын
first
@anushrao8824 жыл бұрын
51th Yay
@akagamishanks-q3o4 жыл бұрын
Please cut your beard. It doesnt look good at all.