how Weierstrass would integrate csc(x)

  Рет қаралды 46,685

blackpenredpen

blackpenredpen

Күн бұрын

Пікірлер: 162
@youtubeviolatedme7123
@youtubeviolatedme7123 4 жыл бұрын
The only sneaky substitution I know is replacing a mic with a pokéball
@rzno3414
@rzno3414 4 жыл бұрын
You win the comment section
@aravinds3846
@aravinds3846 4 жыл бұрын
Lol
@BlokenArrow
@BlokenArrow 4 жыл бұрын
Or replacing a politician with a paramecium. Same level of intelligence.
@heydilanschuastedopinho6682
@heydilanschuastedopinho6682 4 жыл бұрын
Minor mistake: t=tan(x/2), not arctan, so the -1 above the tan on the final answer is a mistake. Apart from it, perfect video as aways.
@blackpenredpen
@blackpenredpen 4 жыл бұрын
Integral of 1/(2+cos(x)), kzbin.info/www/bejne/rJaYY2qojs6Mmrc My "FAST" channel: kzbin.info/www/bejne/iKPLk4pvoLibe7c
@drenzine
@drenzine 4 жыл бұрын
"is t=tan(x/2) obvious to you?" No what da hec is that
@drenzine
@drenzine 4 жыл бұрын
Wow, i got hearted, thanks so much! Math is amazing just pointing that out
@noahtaul
@noahtaul 4 жыл бұрын
Totes unrelated, but in the class I TAd for, the students misheard the teacher call this “tricky substitution” so they called it “kinky substitution” and I didn’t want to correct them
@swift3564
@swift3564 4 жыл бұрын
Weierstrass sub is my favorite!
@SidneySilvaCarnavaleney
@SidneySilvaCarnavaleney 4 жыл бұрын
Prezados nobres amigos(as), professores,(as),alunos(as), com meu respeito a todos aqui presente, estou enviando minha "Tese" para a apreciação de todos; que pi é Racional e Irreversível, (3,15), nesta minha "Tese" tem um fator muito importante a ser respeitado, Não pode ser simplificado, Não pode ser arredondado, não pode ser aproximado, não pode ser fatorado, tem que ser exato para os cálculos do Universo da Matemática, o autor Sr Sidney Silva. www.portaldoslivreiros.com.br/livro.asp?codigo=4410831&titulo=A+Ousadia+do+Pi++Ser+Racional : www.estantevirtual.com.br/mod_perl/info.cgi?livro=2655536635 aeditora.com.br/produto/a-ousadia-do-%cf%80-ser-racional/ www.amazon.com.br/dp/655861281X?ref=myi_title_dp aeditora.com.br/produto/a-ousadia-do-%cf%80-ser-racional/ Onde encontrar minha obra, segue os links acima em epígrafe, e adquirir uma obra onde sua leitura é bem simples e objetiva provando a Racionalidade de Pi, para saber se é Racional ou não, compre minha obra, gratidão sempre o autor Sr Sidney Silva.
@hassanniaz7583
@hassanniaz7583 4 жыл бұрын
Same here. I learned it recently and love this technique
@GaryTugan
@GaryTugan 4 жыл бұрын
At the end... t = tan (x/2), right? Not inv tan 😃👍
@blackpenredpen
@blackpenredpen 4 жыл бұрын
Yes, it was my mistake and my edit didn’t show up.
@GaryTugan
@GaryTugan 4 жыл бұрын
@@blackpenredpen still an awesome vid :) Cool beard too! (Haven’t seen your vids in awhile even tho I have full notifications on)
@j10001
@j10001 3 жыл бұрын
Can you pin Gary’s comment for future viewers to see first?
@andreumora2878
@andreumora2878 4 жыл бұрын
The result shouldn’t be: ln/tg(x/2)/ instead of inverse tg?
@blackpenredpen
@blackpenredpen 4 жыл бұрын
Oh man, I edited that part but my little annotation didn’t come up to block the -1. Thanks for pointing out.
@andreumora2878
@andreumora2878 4 жыл бұрын
@@blackpenredpen i thought that,anyway, really good content as always
@orenfivel6247
@orenfivel6247 4 жыл бұрын
@@blackpenredpen The sneakiest -1 ever LOL GOOD VIDEO
@dealva2035
@dealva2035 4 жыл бұрын
@@orenfivel6247 haha.. when i watch it, i got stunned for sec bcz -1 . like, where it come from
@natasha_georgieva
@natasha_georgieva 4 жыл бұрын
Weierstrass Sub was in fact invented by Euler, almost 100 years earlier. As usual, "no scientific discovery is named after its original discoverer". Stigler's law of eponymy (applicable to itself). Spivak is all the more superfluous here ))
@jrtrct9097
@jrtrct9097 4 жыл бұрын
Having not done any research at all, I suspect that this is yet another case of "Euler discovered so many things that we have to name it after the next person to discover it."
@DavesMathVideos
@DavesMathVideos 4 жыл бұрын
Euler already had a substitution technique named after him. Namely, one which simplifies integrals of certain quadratics.
@angelmendez-rivera351
@angelmendez-rivera351 3 жыл бұрын
@@jrtrct9097 Haha, yes
@quercus_opuntia
@quercus_opuntia 4 жыл бұрын
I'm only in Calc 1 and even though most parts of your videos are confusing as of now I still love watching
@aniruddhaghosh4793
@aniruddhaghosh4793 4 жыл бұрын
Studied this in the calculus book by I A Maron during 12th grade, it's referred to as the "universal substitution" in there.
@jkid1134
@jkid1134 4 жыл бұрын
I just saw this same (x^2+y^2)/xy idea in some completely unrelated algebra video, neat to see again.
@robsbackyardastrophotograp8885
@robsbackyardastrophotograp8885 4 жыл бұрын
This must have been the video you mentioned live last night! So gonna use this method from now on- thanks!
@monoastro
@monoastro 4 жыл бұрын
inb4 thousands of comments ask about the inverse tangent in the last step
@hesp9942
@hesp9942 4 жыл бұрын
This is the first time I've seen something like this; I'll probably end up using that substitution way too often just because it's possible
@hassanniaz7583
@hassanniaz7583 4 жыл бұрын
In Pakistan, along with sin x, cos x, dx we also use tan x= 2t/(1-(t^2)) quick proof: tan x = tan (2*x/2) = 2 tan (x/2)/(1-(tan x/2)^2) by double angle property ☝ = 2t/(1-(t^2)) since t=tan x/2 Edit: it was a slight error of signs
@damianbla4469
@damianbla4469 4 жыл бұрын
You could also do this that way: tan(x) = sin(x) / cos(x) = = [2t / (1 + t^2)] / [(1 - t^2) / (1 + t^2)] = 2t / (1 - t^2)
@hassanniaz7583
@hassanniaz7583 4 жыл бұрын
@@damianbla4469 Yeah it's a good approach
@jackychanmaths
@jackychanmaths 4 жыл бұрын
You can use the substitution u=cos 2x to integrate csc 2x without anything related to Weierstrass substitution Also, I prefer using identities instead of drawing right-angled triangles to find other trigonometric function values to ensure that the signs of the values are correct and to make the solution very much more formal
@stevemonkey6666
@stevemonkey6666 4 жыл бұрын
I like the passion you display here 👍
@tahabukhari3189
@tahabukhari3189 2 жыл бұрын
I think that we use tan(x/2) because: Firstly, it is the only trigonometric function, other than cotx, with an infinite range (from minus infinity to positive infinity). Secondly, tangent is periodic with a period of pi. So the derivation of the standard Weirstrass formulae, that you derived in an older video, using a right angle triangle, "x/2" can range from 0 to pi and hence tan(x/2) with cover all the possible values for the substitution 't' and hence doesn't restrict the domain of the integral. This is what I think but if I have made a mistake then please do correct me. Thank you.
@Awkwkwks
@Awkwkwks 4 жыл бұрын
That sneaky inverse tangent at the end
@AstroB7
@AstroB7 4 жыл бұрын
I love the chen lu ! It’s my life :)
@mathswithmartin6708
@mathswithmartin6708 4 жыл бұрын
Literally just taught this topic to my class; I’ll be sending them the link 👍
@shiina_mahiru_9067
@shiina_mahiru_9067 4 жыл бұрын
I think of it as sort of an inverse of the trig sub. In trig sub, you sub a variable with a trig function. For Weierstrass sub, you sub a trig function with a "polynomial" (or rational function, to be precise). If you are a good observer, you might see that under the Weierstrass sub, the formula of sin and cos are precisely the "standard" rational parametrization of the unit circle, and I guess Weierstrass saw the connection between it and the double angle formula., somehow
@ralfbodemann1542
@ralfbodemann1542 Жыл бұрын
This is one of the best presumptions how Weierstrass may have come to the idea of his really weird substitution I've ever heard or read!
@rezamiau
@rezamiau 4 жыл бұрын
I think this channel is way better than the other, by the way this method was great. And if you notice, you should probably see the inverse sign, in your final answer, which is wrong.
@drv255
@drv255 4 жыл бұрын
Just use cos(2f) = (1 -tan²(f))/ (1+ tan²(f)) then simplify and use 1 + tan²(f) = sec²(f) in numerator.
@andreacosta2238
@andreacosta2238 4 жыл бұрын
So you did make it grow in the end, good job.
@ripudamansingh2
@ripudamansingh2 4 жыл бұрын
Bruh, I thought this was a standard substitution taught everywhere. I didn't know it had a special name.
@GaussianEntity
@GaussianEntity 4 жыл бұрын
It has the same energy as sin(x) = x for small x
@jamescollier3
@jamescollier3 4 жыл бұрын
Philly steak and cheese is my favourite sub
@aradhya_purohit
@aradhya_purohit 4 жыл бұрын
Priceless
@Maou3
@Maou3 4 жыл бұрын
I think the intuition for this substitution comes from a combination of tricky trig identities. 1/(2+cosx) = sec^2(x/2)/(tan^2(x/2)+3) Then, the substitution of tan(x/2) is obvious.
@MichaelRothwell1
@MichaelRothwell1 4 жыл бұрын
Yes, if you substitute cosx=1-2sin^2(x/2) to get denominator 3-2sin^2(x/2) then divide top & bottom by cos^2(x/2) to get denominator 3sec^2(x/2)-2tan^2(x/2) and finally use sec^2(x/2)=1+tan^2(x/2).
@MichaelRothwell1
@MichaelRothwell1 4 жыл бұрын
Here is an alternative method, which easily generalises to any 1/(a+bcosx): in the denominator, substitute 2=2(cos²(x/2)+sin²(x/2)), cos(x)=cos²(x/2)-sin²(x/2), so 2+cosx=3cos²(x/2)+sin²(x/2), then divide top and bottom by cos²(x/2). I prefer this method because we immediately replace each term in the denominator by a homogenous quadratic expression in cos(x/2) and sin(x/2), so when we divide top and bottom we are guaranteed to get and expression in tan(x/2) in the denominator, and of course sec²(x/2) in the numerator, which is essentially the derivative of tan(x/2).
@usernameisamyth
@usernameisamyth 3 жыл бұрын
Mom : Coffee? Me : 9:56 ?
@earnstein7607
@earnstein7607 4 жыл бұрын
Thanks. Brilliant has been so useful ♥️
@ApplePotato
@ApplePotato 3 жыл бұрын
This is just reverse of trig substitution. But I think the trickiest part is to realize you need to use t = tan(x/2) instead of t = tan(x). This is because t = tan(x/2) eliminates the radicals from sin(x) cos(x) and makes t continuous on interval (-Pi, Pi).
@NadiehFan
@NadiehFan 2 жыл бұрын
Sure. But when your integrand is a rational function of *even* powers of sine and cosine it is often easier to use t = tan(x).
@tacheboy
@tacheboy 3 жыл бұрын
12:55 should be tan(x/2) I think?? pls tell
@pixoncillo1
@pixoncillo1 4 жыл бұрын
Ah, Calculus by Spivak, what a beautiful read.
@alxjones
@alxjones 4 жыл бұрын
If you haven't, read his sequel, Calculus on Manifolds! One of my favorite texts of all time.
@mahmoudaboualfa5136
@mahmoudaboualfa5136 4 жыл бұрын
We took it last year. But we called it Bioche General (BG). If the first three rules (B1, B2, B3) didn't work, then we take t=tan(x/2) and do the calculations.
@MichaelRothwell1
@MichaelRothwell1 4 жыл бұрын
What are the first three?
@mahmoudaboualfa5136
@mahmoudaboualfa5136 4 жыл бұрын
@@MichaelRothwell1 For integral f(x) dx (for trigonometric integrals) B1: substitution of x by pi-x (II quadrant) d(pi-x)=-dx If f(pi-x) d(pi-x)=f(x) dx (Doesn't change sign) Then t=cos(x) B2: substitution of x by pi+x (III quadrant) d(pi+x)=dx If f(pi+x) d(pi+x)=f(x) dx (Doesn't change sign) Then t=sinx B3: substitution of x by -x (IV quadrant) d(-x)=-dx If f(-x) d(-x)=f(x) dx (Doesn't change sign) Then t=tanx If else fails, then BG: t=tan(x/2) You have to know all of the trigonometric relations in all quadrants and their signs (positive or negative). If one of them works, then you can substitute t by its corresponding relation, then solve the integral and reintroduce the relation that has x to get the final result. Hope this helped.
@holyshit922
@holyshit922 4 жыл бұрын
This substitution is closely related with Euler's substitution Assume that x is in first quadrant From Pythagorean identity we have sin^2x=1-cos^2x On the right hand side we have difference of two squares which will be useful From the Euler substitution (with the roots) we have sqrt(1-cos^2(x))=(1+cos(x))t With assumption that x is in first quadrant (for sign) and with Pythagorean identity we have sin(x)=(1+cos(x))t
@holyshit922
@holyshit922 2 жыл бұрын
We know that tan(a) is the slope of the line and if we find slope of angle bisector we will express tan(a/2) with sine and cosine How we find angle bisector ? There are few ways f.e. we can follow the construction Lets remind steps of construction Assume that vertex of the angle is A 1. On the one of the rays we choose point D 2. We draw the arc from A with radius AD until it cross the other ray of he angle and name that point E Now we have isosceles triangle ADE If we draw perpendicular bisector of DE it will also pass through the vertex A because ADE is isosceles This perpendicular bisector will divide isosceles triangle ADE to two congruent right triangles ADM , AEM Assume that we have given equations of the lines which contain rays of an angle sin(a)x - cos(a)y=0 y = 0 Assume that vertex of the angle is A = (0,0) Lets choose point D = (1,sin(a)/cos(a)) Radius |AD| = sqrt((1-0)^2+(sin(a)/cos(a))^2) |AD|=sqrt(1+sin^2(a)/cos^2(a)) |AD|=sqrt((cos^2(a)+sin^2(a))/cos^2(a)) |AD|=sqrt(1/cos^2(a)) |AD|=1/cos(a) x^2+y^2=1/cos^2(a) y=0 x^2=1/cos^2(a) Now we choose point E = (1/cos(a),0) Equation for line perpendicular to the line AB and passing through point C is y - yC = - (xB - xA)/(yB - yA)(x - xC) y = - (1/cos(a) - 1)/(0 - sin(a)/cos(a)) x y = - (1/cos(a) - 1)/(- sin(a)/cos(a)) x y = (1/cos(a) - 1)/( sin(a)/cos(a)) x y = (1/cos(a) - cos(a)/cos(a))/( sin(a)/cos(a)) x y = ((1 - cos(a))/cos(a))/( sin(a)/cos(a)) x y = ((1 - cos(a))/sin(a))x tan(a/2) = (1 - cos(a))/sin(a) so if we want to write this substitution with original cosines and sines we will have t = (1 - cos(x))/sin(x)
@kaurapriyanshu8370
@kaurapriyanshu8370 3 жыл бұрын
Sir love from India 🇮🇳🇮🇳🇮🇳🇮🇳🇮🇳❤️💕❤️💕💗💐💐💐
@DavesMathVideos
@DavesMathVideos 4 жыл бұрын
Ha, I just made a video about this a few days ago! The way I see it is that if you have a function of f(sin(x), cos(x)) we can thing of this as some function that is parameterized along the unit circle. By switching variables, you are essentially transforming the function into something more managable! kzbin.info/www/bejne/nZWxlZuveNeZhM0
@JerrysPlace
@JerrysPlace 4 жыл бұрын
I saw your video. Explanation isn't bad but your sound quality isn't so good.
@DavesMathVideos
@DavesMathVideos 4 жыл бұрын
@@JerrysPlace Yeah, I should really get a webcam and a mic. I was in the midst of setting up a place in my apartment where I could record live, but certain things.... happened. Besides that, my day job is actually teaching math and doing IT at a high school, so that keeps me pretty busy as well.
@carterwoodson8818
@carterwoodson8818 4 жыл бұрын
It is such a sneaky substitution very true!!
@theimmux3034
@theimmux3034 4 жыл бұрын
The return of the King
@kormosmate2
@kormosmate2 4 жыл бұрын
There is also a hyperbolic version of this.
@DarkOceanShark
@DarkOceanShark 4 жыл бұрын
Would you mind sharing that version with me, please?
@kormosmate2
@kormosmate2 4 жыл бұрын
@@DarkOceanShark There's a seperate section for it on the wikipedia page of the topic. Although a little short, but basically it's almost the same, only the signs are different as with most hyperbolic identities. The derivation process is also almost the same. Just use the hyp.version of the identities shown in the video.
@DarkOceanShark
@DarkOceanShark 4 жыл бұрын
@@kormosmate2 Thank you Mr. Kormos, that was helpful.
@leepeel6529
@leepeel6529 3 жыл бұрын
Man, the formulae on your tshirt are upside down. Awesome. Where can I buy such a thing?
@ahmadelsonbaty2922
@ahmadelsonbaty2922 4 жыл бұрын
In fact this strange substitution comes very naturally in studying the rational points on the unit circle.
@QwertyUiop-gv1dv
@QwertyUiop-gv1dv 4 жыл бұрын
This was a 12th grade example of our GHSEB textbook in India with same substitution 😀😀
@victorserras
@victorserras 4 жыл бұрын
This result feels like you hacked mathematics
@peterchan6082
@peterchan6082 4 жыл бұрын
Got you again at 12:53 . . . while saying log[tan(x/2)] you wrote log[arctan(x/2)]
@blackpenredpen
@blackpenredpen 4 жыл бұрын
Yea. I actually edited it that’s why you saw a small jump cut there but my edit didn’t come up to block the -1 😆
@thomasblackwell9507
@thomasblackwell9507 3 жыл бұрын
When do you know to use this substitution? For example it is rather obvious when to use a Trig. Sub. However, what are the indicators to use the Weierstrass substitution?
@ralfbodemann1542
@ralfbodemann1542 Жыл бұрын
You can use the t-substitution whenever there is a linear combination of sine, cosine and a constant in the denominator, but no higher degrees of sine or cosine. When you want to integrate functions like 1/(5 + 3*cosx) or 1/(3-2*sinx), Weierstrass substitution will be a good choice. (Although there are other solutions paths. But once you understood and memorized the Weierstrass substitution formulae, this method is faster and more elegant.)
@evceteri
@evceteri 4 жыл бұрын
I didnt notice the pokeball until the end of the video
@nimmira
@nimmira 4 жыл бұрын
hmm why arctan at the end?
@blackpenredpen
@blackpenredpen 4 жыл бұрын
Sorry, it was a mistake.
@nimmira
@nimmira 4 жыл бұрын
@@blackpenredpen :D phew! for a moment I thought I need to re-study all my calculus!
@fordtimelord8673
@fordtimelord8673 3 жыл бұрын
I think it would be very intuitive and instructive if you geometrically derived sin x and cos x in terms of T=tan x/2 on the unit circle.
@NadiehFan
@NadiehFan 2 жыл бұрын
This is done in the Wikipedia article on the Weierstrass substitution. The straight line through (−1, 0) with slope t = tan ½φ, −½π < ½φ < ½π also intersects the unit circle in the point ((1−t²)/(1+t²), 2t/(1+t²)) as we can check by solving y = t(x + 1), x² + y² = 1 for x and y expressed in t. But it also clear from the inscribed angle theorem for a circle that the coordinates of the second point of intersection are (cos φ , sin φ) so we have cos φ = (1−t²)/(1+t²), sin φ = 2t/(1+t²). Furthermore we can see in the diagram that tan ½φ = (sin φ)/(1 + cos φ) = (1 − cos φ)/(sin φ) from which we can also express cos φ and sin φ in tan ½φ. In fact this is even easier since we only have to solve a linear system. To see this, put tan ½φ = t, sin φ = s, cos φ = c, then we have ts + c = 1, s − tc = t which is a linear system in s and c from which we get s = 2t/(1+t²), c = (1−t²)/(1+t²).
@rashmithmr1117
@rashmithmr1117 4 жыл бұрын
His chart is very helpful 😂😂
@shreyasparameshwaran5421
@shreyasparameshwaran5421 3 жыл бұрын
Do u know where we can get it???
@shreyasparameshwaran5421
@shreyasparameshwaran5421 3 жыл бұрын
Or is it available only in the vid
@bu4771
@bu4771 4 жыл бұрын
Thank you
@manosxa
@manosxa 4 жыл бұрын
would you be able to solve exactly the d equation y ' ' = A*sqrt(1+y'(0)^2) for x Ε (0, L)
@angelmendez-rivera351
@angelmendez-rivera351 3 жыл бұрын
The notation you are using to denote this equation is a little too confusing. Did you mean to write y''(x) = A·sqrt[1 + y'(x)^2], or did you actually mean to write y''(x) = A·sqrt[1 + y'(0)^2]? Because the answer to the question varies drastically between the two. Also, what does "x E (0, L)" mean? Does this mean "x is in the interval (0, L)"? If so, what is L, and what relevance does it have to the problem? These questions need to be answered before one can even attempt to solve the equation.
@ecavero1
@ecavero1 3 жыл бұрын
The answer to the last integral is tangent; not inverse tangent!
@dovidglass5445
@dovidglass5445 3 жыл бұрын
Shouldn't the thumbnail read t=tan(x/2)? At the moment it says t=sin(x/2).
@blackpenredpen
@blackpenredpen 3 жыл бұрын
U r right. Thanks!
@dovidglass5445
@dovidglass5445 3 жыл бұрын
@@blackpenredpen You're welcome! :)
@jamesdiamond9907
@jamesdiamond9907 4 жыл бұрын
Can you please make a video on rationalizing the denominator of (1/pi)? Cause if we multiply denominator and numinator by "pi", denominator is still irrational. Love from india❤
@blackpenredpen
@blackpenredpen 4 жыл бұрын
(pi)^-1
@angelmendez-rivera351
@angelmendez-rivera351 3 жыл бұрын
1/π cannot be rationalized, because π is a transcendental constant.
@Dionisi0
@Dionisi0 4 жыл бұрын
Who is Chen Lu?
@mohitsingh4744
@mohitsingh4744 4 жыл бұрын
Hi, I have a question about Euler's method (for approximation). In our calculus class, we went over how we can divide it into steps, but these were all a finite number of steps. Is it possible to take an infinite number of steps by setting the number of steps = b and then setting lim b->infinity? Sorry if my vocab is bad I'm still a beginner in calculus but if you want elaboration please let me know!
@MichaelRothwell1
@MichaelRothwell1 4 жыл бұрын
Yes, you can make the steps smaller and smaller and see where your answer is heading (if that is what you meant) . Calculus is all about handling the infinitely small by taking limits.
@mohitsingh4744
@mohitsingh4744 4 жыл бұрын
@@MichaelRothwell1 Thank you for your response! Do you know how I could actually apply this to a problem because I can't seem to find any examples online? I know that it is possible to just take the integral of the differential equation but I thought this method might be an alternative. Thank you again!
@MichaelRothwell1
@MichaelRothwell1 4 жыл бұрын
@@mohitsingh4744 The method you suggest could work in theory, but I have never seen this method proposed or used. However, I believe you could use it to solve dy/dx=y.
@ZyroZoro
@ZyroZoro 3 жыл бұрын
This is so cool :O
@frozenmoon998
@frozenmoon998 4 жыл бұрын
I bet that guy was so sneaky, he substituted some single variable 5th grade equations to be equal to hard abstract algebra problems. In any event, bprp can make complicated people/problems look easy and enjoyable ^^
@shivansh668
@shivansh668 4 жыл бұрын
I heard about this first time 😐
@kabsantoor3251
@kabsantoor3251 4 жыл бұрын
Why is absolute value taken for log
@MichaelRothwell1
@MichaelRothwell1 4 жыл бұрын
In case the argument is negative.
@ψωςεψωςε
@ψωςεψωςε 4 жыл бұрын
What is the difference between weierstrass sub and bioche sub
@defrom7147
@defrom7147 2 жыл бұрын
Weiersstraas sub is one of the Bioche rules
@Iamnotyou29
@Iamnotyou29 4 жыл бұрын
Why that was tan-1???
@akotosiLord
@akotosiLord 4 жыл бұрын
This is not connected in the video but, can you pls show the solution in find a,b, and c. a+b+c=12 abc=48
@novidsonmychanneljustcomme5753
@novidsonmychanneljustcomme5753 4 жыл бұрын
If you want to get explicit numbers as a solution (with no variables left), you need a third independent equation expressing a relation between a, b and c. Otherwise it's not solvable.
@akotosiLord
@akotosiLord 4 жыл бұрын
@@novidsonmychanneljustcomme5753 Hello, thank you for noticing. The third equation is ab+bc+ac=44 Can I solve it without transforming into a polynomial?
@novidsonmychanneljustcomme5753
@novidsonmychanneljustcomme5753 4 жыл бұрын
@@akotosiLord Well OK, here we go: (x+a)*(x+b)*(x+c)=x^3+(a+b+c)*x^2+(ab+bc+ac)*x+abc -> The coefficients of this general 3rd degree polynomial do exactly have the form of your equations. So in other words, you can get a, b and c by finding the zeroes of the polynomial. In this case the polynomial would be x^2+12*x^2+44*x+48. By guessing you find that x1=2 and so you can do the polynomial division with (x+2). After that you get a quadratic polynomial which gives you the other zeroes x2=4 and x3=6. And these three zeroes are also the solutions for a, b and c. (The order doesn't matter because you only got addition and multiplication in your equations where you can change the order of the numbers within addition or multiplication as you like.) So in order to give an explicit answer to your question: The solutions to your system of equations are a=2, b=4 and c=6. (But it also could be like a=4, b=6 and c=2 and so on...)
@akotosiLord
@akotosiLord 4 жыл бұрын
@@novidsonmychanneljustcomme5753 Hello, thank you for the solution but that is my original given. x³+12x²+44x+48 I am trying to solve for roots without using the usual way. I am finding a clue so that I can make a cubic formula for solving roots. P.S. I already found one but it is so long. I am trying to make a short and easy one
@novidsonmychanneljustcomme5753
@novidsonmychanneljustcomme5753 4 жыл бұрын
@@akotosiLord Well OK, good luck then. ;-) The "long" formula you mentioned must be Cardano's method and besides this the polynomial division is the only other general way I know to solve problems like that. Not meant to offend you, but tbh I doubt that you will be able to find a shorter formula than Cardano's one. (When I used to read about all this a little more in detail I accepted for myself that this should be the simplest possible way.) There is still an approximation way called Newton's method which is applicable not only for this kind of functions, but the results will always stay approximations, no matter how often you iterate. And btw it is still possible to solve 4th degree polynomials in general (even though the formula gets even much more complicated than the one for 3rd degree), but from 5th degree on there is no general solution possible anymore.
@markpage2779
@markpage2779 4 жыл бұрын
Brilliant :)
@laurentiusmichaelgeorge1118
@laurentiusmichaelgeorge1118 4 жыл бұрын
Just misread the title as 'weirdass sub'. Probably have had a little bit too much of that GTA V meme.
@birdboat5647
@birdboat5647 4 жыл бұрын
I love SO(2) :)
@AhmadAhmad-qx6fp
@AhmadAhmad-qx6fp 4 жыл бұрын
Weierstrass was also a lawyer... so in terms of being sneaky? Yeah! It follows naturally
@BalaMurugan-hk2gd
@BalaMurugan-hk2gd 4 жыл бұрын
Hey dude what's your name.your ideas are great i love you from India
@nic741
@nic741 4 жыл бұрын
How long do you think the cool beard’s going to grow?
@motekkz9997
@motekkz9997 4 жыл бұрын
Human brain is limitless wow
@oa213
@oa213 4 жыл бұрын
Legend
@aak-agami9734
@aak-agami9734 3 жыл бұрын
Undo the chandu
@tomatrix7525
@tomatrix7525 3 жыл бұрын
Bprp, you pronounce the W as a V since it is german...So it’s like ‘Veierstraß’
@blackpenredpen
@blackpenredpen 3 жыл бұрын
Oh?! I didn’t know!
@YKj3119
@YKj3119 4 жыл бұрын
Could talk about argument of 0
@angelmendez-rivera351
@angelmendez-rivera351 3 жыл бұрын
arg(0) is undefined.
@sirllamaiii9708
@sirllamaiii9708 4 жыл бұрын
ayyy im early to my math lesson for once
@fatihsinanesen
@fatihsinanesen 4 жыл бұрын
Hold on! A beard is talking.
@the_hasnat
@the_hasnat 4 жыл бұрын
Assalmu Alaikum!
@rfzafar
@rfzafar 4 жыл бұрын
proof of fermats last theorem .......
@jomelherras8910
@jomelherras8910 4 жыл бұрын
the beard thoooooo.
@nathannguyen7449
@nathannguyen7449 4 жыл бұрын
Nice
@Dionisi0
@Dionisi0 4 жыл бұрын
U made a mistake at the end bUddy
@theboss9600
@theboss9600 4 жыл бұрын
Just 10 comments lol
@SuperOkitos
@SuperOkitos 4 жыл бұрын
Sos muy cra chino.
@6612770
@6612770 4 жыл бұрын
Oopsy!
@johnwick5901
@johnwick5901 3 жыл бұрын
You definitely should shave
@sueyibaslanli3519
@sueyibaslanli3519 4 жыл бұрын
10th
@andrewli8901
@andrewli8901 4 жыл бұрын
6th
@duynguyencong6990
@duynguyencong6990 4 жыл бұрын
ho
@dilemmacubing
@dilemmacubing 4 жыл бұрын
first
@anushrao882
@anushrao882 4 жыл бұрын
51th Yay
@akagamishanks-q3o
@akagamishanks-q3o 4 жыл бұрын
Please cut your beard. It doesnt look good at all.
@chriswong7928
@chriswong7928 4 жыл бұрын
get your beards off
@samiunalimsaadofficial
@samiunalimsaadofficial Жыл бұрын
Nice
Precalculus challenge: can we just cancel out the sine?
12:27
blackpenredpen
Рет қаралды 131 М.
Integral of so many things! (great for calculus 2 review)
24:55
blackpenredpen
Рет қаралды 195 М.
Beat Ronaldo, Win $1,000,000
22:45
MrBeast
Рет қаралды 158 МЛН
Что-что Мурсдей говорит? 💭 #симбочка #симба #мурсдей
00:19
Integrating by Weierstrass Substitution (visual proof)
4:46
Mathematical Visual Proofs
Рет қаралды 10 М.
an A5 Putnam Exam integral for calc 2 students
19:10
blackpenredpen
Рет қаралды 430 М.
How a Blind Mathematician Became the World's Greatest
16:31
Newsthink
Рет қаралды 118 М.
Why I don't teach LIATE (integration by parts trick)
14:54
blackpenredpen
Рет қаралды 356 М.
A Cambridge Integral Experience
29:03
blackpenredpen
Рет қаралды 225 М.
My all-in-one calculus problem
11:54
blackpenredpen
Рет қаралды 119 М.
Supreme Integral with Feynman's Trick
17:53
blackpenredpen
Рет қаралды 214 М.
Integration using t=tanx
10:59
Prime Newtons
Рет қаралды 10 М.
your Calculus teacher lied* to you
18:26
Michael Penn
Рет қаралды 77 М.
7 Outside The Box Puzzles
12:16
MindYourDecisions
Рет қаралды 262 М.