Integral of sec(x) but without that trick!

  Рет қаралды 81,662

blackpenredpen

blackpenredpen

Күн бұрын

Пікірлер: 241
@blackpenredpen
@blackpenredpen 5 жыл бұрын
Red or black?
@salociiin42
@salociiin42 5 жыл бұрын
Black
@lucassssss4575
@lucassssss4575 5 жыл бұрын
Red
@nischalada8108
@nischalada8108 5 жыл бұрын
blackpenredpen black
@buckeye49
@buckeye49 5 жыл бұрын
Green
@pichass9337
@pichass9337 5 жыл бұрын
pen
@pbj4184
@pbj4184 3 жыл бұрын
Ah this "mechanical" evaluation is much better than the "magical" original because this shows all the relevant motivation and isn't too hard either!
@JohnSmith-rf1tx
@JohnSmith-rf1tx 5 жыл бұрын
CHEATER!!! :) You claimed you would do the integration without using the the trick of multiplying by (sec x + tan x)/(sec x + tan x) but that's exactly what you did in the process of converting your answer to the standard form. You may have dressed it up in different clothes, but it's still there! At 2:34, you first multiply by (cos x)/(cos x). Well, that's the same as multiplying top and bottom by (1/cos x). Then, at 8:20, you use (1 + sin x)/(1 + sin x). When you multiply those two together, you get exactly the (sec x + tan x)/(sec x + tan x) you claimed you wouldn't use.
@ishaanivaturi2387
@ishaanivaturi2387 5 жыл бұрын
It is more intuitive and logical than outright multiplying by secx + tanx, which is what most people do. I was mad first seeing this integral because I wouldn't have known to do that, so I ran through this same integration which is much more intuitive.
@ssdd9911
@ssdd9911 5 жыл бұрын
but the integration IS done without the multiplication
@Metalhammer1993
@Metalhammer1993 5 жыл бұрын
@@ishaanivaturi2387 yup i never converted it to standard result when i tried it myself. Did it several times and always got the nonstandars result and thought I'm too stupid xD
@Ksh3104
@Ksh3104 5 жыл бұрын
Wow that was one hell of a point u made there My opinion on this is that he technically finished integrating without 1+sinx and used 1+sinx to just make a point that those results are same
@iabervon
@iabervon 5 жыл бұрын
Looked at that way, the trick is that you do the problem the verbose and well-motivated way, and then combine everything you turned out to need into one mysterious step.
@pablorestrepodiaz8520
@pablorestrepodiaz8520 5 жыл бұрын
wow u love this video , its like magic when you demostrate that those 2 expression are the same
@blackpenredpen
@blackpenredpen 5 жыл бұрын
: ) thanks
@itszeen7855
@itszeen7855 5 жыл бұрын
Love it when there is a new upload when I get home from school!
@ishaanivaturi2387
@ishaanivaturi2387 5 жыл бұрын
This is so nice! I was curious about the same thing last year and ran through this same derivation too! Glad to know you're bringing it to everyone :)
@blackpenredpen
@blackpenredpen 5 жыл бұрын
Yay glad that you like it!
@changenow9228
@changenow9228 5 жыл бұрын
100 differential equations please...thank you
@VibingMath
@VibingMath 5 жыл бұрын
Thanks man! This technique is also applicable to integrate cosec x and it's more natural to do in this way rather than multiplying a complicated expression in the first place! I will let my students to watch this so they dont need to memorize that trick! Yay!
@blackpenredpen
@blackpenredpen 5 жыл бұрын
Mak Vinci hahaha yea!! My students and even viewers get mad when they see that trick
@VibingMath
@VibingMath 5 жыл бұрын
@@blackpenredpen I also got mad when first time seeing that trick lol
@japotillor
@japotillor 5 жыл бұрын
It's not an intuitive trick, I teach both. I also like using half angle forms too.
@japotillor
@japotillor 5 жыл бұрын
A way for me to remember it Is that one multiplies top and bottom by 1 which is (sec x)^2 - (tan x)^2, which factors to (sec x + tan x) (sec x - tan x) Eliminating the (sec x - tan x) terms, you get sec x + tan x :)
@angelmendez-rivera351
@angelmendez-rivera351 5 жыл бұрын
Joe Potillor Yes, this works perfectly fine too.
@MrAznBoyWins
@MrAznBoyWins 5 жыл бұрын
you have a real heart of a teacher, love to see it
@blackpenredpen
@blackpenredpen 5 жыл бұрын
Thank you!! Btw I have been teaching for years already : )
@osmankanu1112
@osmankanu1112 4 жыл бұрын
The best sex in wold .
@Nonsense_2021
@Nonsense_2021 5 жыл бұрын
I'm in my first calculus class, and just today I was wondering how to integrate that thing. Coincidence or destiny? Great vid as always. Greetings from Honduras :D
@blackpenredpen
@blackpenredpen 5 жыл бұрын
Fernando Sarmiento Hahahah must be destiny!!!
@blackpenredpen
@blackpenredpen 5 жыл бұрын
Fernando Sarmiento and thank you!
@Avaflyne
@Avaflyne 5 жыл бұрын
¿A quien le importa de dónde saludes? Pobre pendejito ilegal
@AloncraftMC
@AloncraftMC 4 жыл бұрын
@@Avaflyne mmm mejor calla. La proxima vez no seas tan toxico por favor.
@Avaflyne
@Avaflyne 4 жыл бұрын
@@AloncraftMC Mejor vete a ctpm
@aviator_2401
@aviator_2401 5 жыл бұрын
I am from India . Lol I had those formulas written in my book . Search the book ML Aggarwal . All formulas are there . Integration of Sec x dx = log| sec x + tan x | + C or log | tan (π/4 + x/2)|+ C Integration of tan x dx = - log|cos x| + C Integration of cot x dx = log| sin x| + C Integration of cosec x dx = log| cosec x - cot x| + C or log | tan x/2| + C Nice video btw dude !
@diegofnndiego9938
@diegofnndiego9938 6 ай бұрын
I love how you explain every step
@ernestschoenmakers8181
@ernestschoenmakers8181 4 жыл бұрын
I did it the other way around, i equated both solutions and here are the steps: lnIsec(x)+tan(x)I = (1/2)*lnI(1+sin(x))/(1-sin(x))I, now i put 1/2 in front of the left-hand term and squared it: (1/2)*ln(sec(x)+tan(x))^2=(1/2)*ln(1+sin(u)/(1-sin(u)) so the 2 terms within ln are equal: (sec(u)+tan(u))^2=(1+sin(x)/(1-sin(x)) now i expand the left-hand term and this should be equal to the right-hand term of the equality sign: sec^2(u)+tan^2(u)+2*sec(u)*tan(u)= (1/cos(x))^2+(sin(x)/cos(x))^2+2*sin(x)/cos^2(x): the denominators are the same so: (1+2*sin^2(x)+2*sin(x))/cos^2(x)= (1+sin(x))^2/(1-sin^2(x))= (1+sin(x))^2/(1+sin(x))(1-sin(x))= (1+sin(x))/(1-sin(x)) so left-hand side and right-hand side are equal.
@thomasarch5952
@thomasarch5952 5 жыл бұрын
Actually once you get the integral into the form of ((cos x ) / ( 1 - (sin x)^2 ) ) dx you are done as the answer is artanh (sin x) + C! Just use the hyperbolic tangent function. Finshed!! No fooling around with partial fractions.
@hmm1778
@hmm1778 5 жыл бұрын
Do you noticed something is wrong? In case you didn't Derivative of arctan is 1/1+x^2 not 1/1-x^2
@ssdd9911
@ssdd9911 5 жыл бұрын
@@hmm1778 he is saying the hyperbolic version of arctan
@ssdd9911
@ssdd9911 5 жыл бұрын
but the hyperbolic function does not have the absolute value so it is less rigid
@ieqvilamaria619
@ieqvilamaria619 5 жыл бұрын
Bprp Thanks for yours videos, them are awesome so much, I am your fan!! :)
@maliciousmarka
@maliciousmarka 5 жыл бұрын
Great explanation on this video! Thanks for helping me understand :)
@edu10th47
@edu10th47 2 жыл бұрын
I love this video!!! I always hated that trick!
@shambosaha9727
@shambosaha9727 5 жыл бұрын
This video really made my day
@dr.rahulgupta7573
@dr.rahulgupta7573 Жыл бұрын
Excellent presentation ! 👌 black pen - red pen -green pen.
@yashovardhandubey5252
@yashovardhandubey5252 5 жыл бұрын
This was uploaded at 3 am in the morning in my country...... Still watched it
@marcuslautier5304
@marcuslautier5304 5 жыл бұрын
If you use the substitution u=tanx, du=sec^2xdx and you arrive at the integrand du/secx. From there, manipulate the initial substitution u=tanx x to obtain secx=sqrt(1+u^2) and substitute to arrive at the integrand du/(sqrt(1+u^2)) which becomes ln(u+sqrt(1+u^2)) +C by the table of standard integrals. Substituting u for tanx into the indefinite solution arrives at the required result. No tricks needed 👍
@marcuslautier5304
@marcuslautier5304 5 жыл бұрын
Similarly for the integral of cosecx, let u=cotx
@KamleshSharma-gc8jv
@KamleshSharma-gc8jv 5 жыл бұрын
at 8:24 cant we use the identity sin^2 x/2 + sin^2 x/2 + 2(sin x/2 cos x/2) in the numerator and sin^2 x/2 + sin^2 x/2 - 2(sin x/2 cos x/2) in the denominator?
@jeffreys8199
@jeffreys8199 4 ай бұрын
im new to this channel and i love how he smiles after doing a step like that shows how he loves maths😀 and boys girls find these kind of boys attractive bcz they like the men with dedication (kinda motivation for the boys)😂
@jeffreys8199
@jeffreys8199 4 ай бұрын
and somebody say what does the channel name mean??
@GreenMeansGOF
@GreenMeansGOF 5 жыл бұрын
I think it all comes down to already knowing the answer. The second way is more intuitive but the first way is faster.
@blackpenredpen
@blackpenredpen 5 жыл бұрын
Yup!! Agree!!
@krukowstudios3686
@krukowstudios3686 5 жыл бұрын
Nice one. I think it is a bit sad that we do not really see cosecant and cotangent that often. I would love to see more of them :D
@blackpenredpen
@blackpenredpen 5 жыл бұрын
Krukow Studios thanks!! In fact chase did it two years ago on my channel already : ) kzbin.info/www/bejne/jYqrdJ2crb56oLM
@krukowstudios3686
@krukowstudios3686 5 жыл бұрын
blackpenredpen Yea, I have seen that :D. I was actually thinking about things like differential equations, usage og their identities, or other problems that involve those two :)
@joananathan6571
@joananathan6571 5 жыл бұрын
Thank you for the videos! It's helping me a lot :)
@Peter_1986
@Peter_1986 5 жыл бұрын
blackpenredpen is one of the most likeable guys I know of on KZbin.
@blackpenredpen
@blackpenredpen 5 жыл бұрын
Laurelindo awww thank you!
@anzarrabbani3766
@anzarrabbani3766 6 ай бұрын
4:05 is it possible to make this -arctanh(u)?
@Sg190th
@Sg190th 5 жыл бұрын
I wish my professor did that in Calc 1 but we had a bit of a delay due to the hurricane so he probably didn't have time to explain how to do the integral. Now I can't wait for you to do integral of Sec^2(x) with Weierstrass substitution!
@stephenbeck7222
@stephenbeck7222 5 жыл бұрын
Did you cover integrations with partial fractions in calculus 1? Normally I’ve seen that as a calc 2 topic, and most students don’t even learn how to decompose partial fractions until they get to it in calculus (some algebra 2 or precalculus books have it but it never gets taught).
@Sg190th
@Sg190th 5 жыл бұрын
Oh yeah partial fractions... yeah you're right I had learned that in calc 2.
@adityakumarvishwakarma7282
@adityakumarvishwakarma7282 5 жыл бұрын
Sir make a video on e! e factorial,I have been searching for it since many days but I have not found it
@allaincumming6313
@allaincumming6313 5 жыл бұрын
Actually, this is a much more didactic/heuristic way to solve ∫ sec(x)dx, and the tricky path to the classic ln|sec(x)+tan(x)| is even more "findable" and logical, by just applying a clever algebra. That trick never satisfied me, but it and other tricks taught me the power of the convenient 1's and 0's.
@martinarturoarellanoreyes7467
@martinarturoarellanoreyes7467 5 жыл бұрын
Someone can explain me the minus betwen ln on min 6:00
@circlonianmapper
@circlonianmapper 5 жыл бұрын
If you find the derivative of that expression, I think the answer will become clear. When you take the derivative of ln|1-u| you get -1/1-u. Note that in the integral, it is +1/1-u, not -1/1-u. The negative sign that he put cancels out the negative sign that you get when you take the derivative of ln|1-u|
@ekueh
@ekueh 5 жыл бұрын
Reverse chenlu? Or lu chen
@pichass9337
@pichass9337 5 жыл бұрын
Lol, just went over this today in my class
@JSSTyger
@JSSTyger 5 жыл бұрын
Yes but did your teacher use different colored markers?
@pichass9337
@pichass9337 5 жыл бұрын
@@JSSTyger no. Just a blue one...
@blackpenredpen
@blackpenredpen 5 жыл бұрын
Nice!!!
@AhmedAli-co7ob
@AhmedAli-co7ob 5 жыл бұрын
Hello, you really help me learn calculus and I really love your videos! do you have one of those 6 hour videos for Calculus 2 series? Would really love to see that.
@blackpenredpen
@blackpenredpen 5 жыл бұрын
If you are talking about convergence/divergence of series, then it's here kzbin.info/www/bejne/oIXYhXiZrNuehpY 100 series!
@AhmedAli-co7ob
@AhmedAli-co7ob 5 жыл бұрын
blackpenredpen you’re actually amazing and I wish I can sub to you 10000000 times! You don’t know how much this will help me. This is exactly what i am looking for :) do you also have something to find what a series converges to and not just if it converges or diverges?
@blackpenredpen
@blackpenredpen 5 жыл бұрын
Ahmed Ali yea they are in there as well. Check out the pdf. Link in description
@AhmedAli-co7ob
@AhmedAli-co7ob 5 жыл бұрын
blackpenredpen perfect! Thank you so much man. Keep up the good work :)
@vena7429
@vena7429 3 жыл бұрын
4:34 Can anyone tell me in detail how 1/2 was coming out?
@TheAnhard
@TheAnhard 5 жыл бұрын
Amazing, thank you!
@jakub_pham
@jakub_pham 5 жыл бұрын
great stuff
@gurvishwassingh5542
@gurvishwassingh5542 5 жыл бұрын
Sir what about 1/cosx=sinxtanx+cosx and Integrating sinxtanx by parts? I know the answer it would be same but still fun way
@gurvishwassingh5542
@gurvishwassingh5542 5 жыл бұрын
I have some interesting question with good solutions if you want i can share them.
@carultch
@carultch 11 ай бұрын
For integrating sin(x)*tan(x) by parts: Let tan(x) be differentiated and sin(x) be integrated. S _ _ _ _ D _ _ _ _ I + _ _ _ tan(x) _ _ sin(x) - _ _ _ sec(x)^2 _ _ -cos(x) Connect signs with D-column entries, and then multiply by 1 term down in the I-column. For the final row, integrate across the row. tan(x)*-cos(x) + integral sec(x)^2 * cos(x) dx Simplify: -sin(x) + integral sec(x) dx We've already solved integral of secant of x, so we can construct the solution: ln(|sec(x) + tan(x)|) - sin(x) + C
@shlomozerbib388
@shlomozerbib388 5 жыл бұрын
@ 10:00 how can you put out the square which is within the absolute values?
@blackpenredpen
@blackpenredpen 5 жыл бұрын
shlomo zerbib Abs(x^2)=abs(x*x)=abs(x)abs(x)=(abs(x))^2
@shlomozerbib388
@shlomozerbib388 5 жыл бұрын
@@blackpenredpen ok
@CornishMiner
@CornishMiner 5 жыл бұрын
I miss the "Black Pen Red Pen YAY!" intros.
@dychaneng
@dychaneng 5 жыл бұрын
Hello Sir, Please help to to figure out of this sum of sequence: S_n=1/2+1/8+1/24+....+1/(n*2^n). Thank you
@holyshit922
@holyshit922 4 жыл бұрын
People who dont use secant also have trick Int(1/cosx,x)=Int(1/sin(Pi/2+x),x)= Int(1/(2sin(Pi/4+x/2)cos(Pi/4+x/2)),x)=Int(1/(2tan(Pi/4+x/2)cos^2(Pi/4+x/2)),x)
@akshatahuja2523
@akshatahuja2523 5 жыл бұрын
RED
@ericzhang634
@ericzhang634 2 жыл бұрын
this guy is a god
@logiciananimal
@logiciananimal 5 жыл бұрын
Guess: the traditional method with the sec + tan multiplication does not require partial fractions, so is easier. (Stewart's book at least from years ago doesn't do PF until later.)
@YorangeJuice
@YorangeJuice 3 жыл бұрын
That was magical
@c_ruizl
@c_ruizl 5 жыл бұрын
I don't speak English very well, but I still see your videos, greetings from Mexico.
@gustavorc25
@gustavorc25 5 жыл бұрын
Very original, nice 😎👌
@anis786
@anis786 Жыл бұрын
you could also start with u=sinx, same process different order
@thomasarch551
@thomasarch551 Жыл бұрын
So using the inverse hyperbolic arc tan function avoids have to mess with paartial fractions and gives a perfectly correct answer too.
@vaibhavbhardwaj1886
@vaibhavbhardwaj1886 2 жыл бұрын
Love from India 🇮🇳
@henrylin65
@henrylin65 5 жыл бұрын
x^(x+1)+1=(x+1)^x Solve for x. I know the answer is 0,1,2, how do you solve that?
@ernestschoenmakers8181
@ernestschoenmakers8181 4 жыл бұрын
I tried a lot of ways to solve this one like factoring out x^x and squaring both sides but it didn't lead to a solution, maybe anyone else have a suggestion?
@fantiscious
@fantiscious 2 жыл бұрын
I don't know how to solve algebraically, but it seems very related to Catalan's conjecture, which is already proved. Maybe you could show that there's no other solutions than those?
@Jhev1000
@Jhev1000 5 жыл бұрын
Another nice way: a Weierstrass substitution!
@blackpenredpen
@blackpenredpen 5 жыл бұрын
Jhevon Smith oh yea! For some reason that isn’t a popular method but I think it’s very cool!
@Jhev1000
@Jhev1000 5 жыл бұрын
@@blackpenredpen what's cool is you still reply to comments like this!
@blackpenredpen
@blackpenredpen 5 жыл бұрын
Thanks! I try to reply to as many comments as possible!
@theelectro15
@theelectro15 Жыл бұрын
FINALLY, THANKS
@عشتارللرياضيات
@عشتارللرياضيات 2 жыл бұрын
lived your hand
@danielsimiyu774
@danielsimiyu774 3 жыл бұрын
Hey fam greetings from Kenya......... am asking how do i know that i have to consider one to be D and the other one to be I
@lordcezar4657
@lordcezar4657 Жыл бұрын
I did this on a test in school 😂. Didnt know about the trick
@TouhidulIslam
@TouhidulIslam 5 жыл бұрын
Hello Blackpenredpen! I'm one of your students from Bangladesh. Can you please inform me that how can I get your hoodie?
@blackpenredpen
@blackpenredpen 5 жыл бұрын
Touhidul Islam hi there! You can see the link in the description thanks
@feelthereal5742
@feelthereal5742 5 жыл бұрын
Hello. I'm also from Bangladesh. I love black pen red pen's videos.
@ivankaticos
@ivankaticos 5 жыл бұрын
Pls do integral battles!!!
@Patapom3
@Patapom3 5 жыл бұрын
Amazing!
@rarebeeph1783
@rarebeeph1783 2 жыл бұрын
i stumbled upon this method in reverse while trying to integrate 1/(4-x^2) dx. my mind went to trig sub first, stuck me at sec(x) dx, and then i realized i could use partial fractions, which then implied that i could have used partial fractions to integrate sec(x) by reverse trig sub to 1/(1-x^2).
@Sir_Isaac_Newton_
@Sir_Isaac_Newton_ 6 ай бұрын
the organic chemistry tutor is seething
@TheStrafendestroy
@TheStrafendestroy 3 жыл бұрын
What was the method to get the constants when you separated the 1-u^2
@FrostDirt
@FrostDirt 3 жыл бұрын
It's called Partial Fraction Decomposition
@carultch
@carultch 11 ай бұрын
Heaviside coverup. The idea is that you cover up the denominator of the term you're interested in, and plug in the value of the variable that makes the covered up term equal to zero, in to the rest of the expression. Evaluating that, will tell you the coefficient that belongs on top of that term. Here's why it works. Consider a general case of: (c*x + d)/[(x - p)*(x - q)], which we'd like to equate to A/(x - p) + B/(x - q) (c*x + d)/[(x - p)*(x - q)] = A/(x - p) + B/(x - q) To find A, multiply through by (x - p), to partially clear fractions: (c*x + d)/(x - q) = A*(x - p)/(x - p) + B*(x - p)/(x - q) Take the limit as x approaches p. This makes the B-term disappear, since (x - p) = 0, and (x - q) will equal something else, so we aren't dividing by zero there. This is a huge advantage, because now we can solve for A independently of solving for B. However, there appears to be a problem with the A-term, until you realize that it's just a removable discontinuity, since the top and bottom are identical terms that cancel. Once we remove the removable discontinuity, we now have a more direct way to solve for A: A = (c*p + d)/(p - q) Likewise, a similar formula, solves for B: B = (c*q + d)/(q - p)
@hhht7672
@hhht7672 4 жыл бұрын
Sorry I’m late but @3:55 couldn’t you just say that’s arctanh(u) ?
@carultch
@carultch Жыл бұрын
We still have to recall the value of u, since we want the solution in the x-world, and not the u-world.
@adedejiyemi8268
@adedejiyemi8268 2 жыл бұрын
U are wow sir,good, perfect.. And get minus wen solving into partial fraction ?
@liltop5930
@liltop5930 5 жыл бұрын
I’m only in 9th grade and we’re doing solving for x on Both sides only( which is easy) but this is so complicated omg
@matthewbradley4644
@matthewbradley4644 4 жыл бұрын
You should watch 3blue1brown's essence of calculus, i really like him. Did you even learn about logarithms yet?
@TheInterestingInformer
@TheInterestingInformer 2 ай бұрын
Can someone explain the 1/2 over 1+u thing he did?
@abdulazizmemesh2791
@abdulazizmemesh2791 5 жыл бұрын
Can you make a video about descartes rule of signs?
@fernandogaray1681
@fernandogaray1681 5 жыл бұрын
Whats the idea behind partial fractions? I never figured out how it works and for example, when u have a squared termn in the denominator u had to put a linear expresion on top
@angelmendez-rivera351
@angelmendez-rivera351 5 жыл бұрын
Fernando Garay The idea of partial fractions is to write any rational expression on x as a polynomial on x plus a sum of rational expressions on x, where these rational expressions on x have numerators of degree at least 1 less than the denominators. This is desired because any expression of this form can be "trivially" integrated. For example, (Ax + B)/(ax^2 + bx + c) can always be integrated provided a, b, c are not all 0, regardless of whether the denominator can be factored or not. Alternatively, you can make partial fraction decomposition simpler if you allow complex numbers. In this case, any rational expression on x can be written as a sum of expressions of the form A/(x + b), where A and b are complex numbers. This is desirable, because it means the integral is a sum of logarithms, which you can then recombine into logarithms of products where you can get the logarithm of a rational expression as the result. It's systematic, which is why it is optimal.
@carultch
@carultch 11 ай бұрын
The idea is that you can rewrite a big complicated ratio of polynomials, in a form that is more calculus-friendly, as individual fractions of each denominator. Just as you add 1/4 + 1/3 to get 7/12, partial fractions does this process in reverse, so you can get the original sum of fractions that adds up to your given expression. Constant-over-linear terms, can integrate with natural log, while linear-over-quadratic terms, can be integrated with integration by completing the square, and using inverse tangent. In a general sense, you always have a degree (n-1) polynomial on top, given a denominator polynomial of degree n. So this is how linear factors of the original denominator, become constant-over-linear terms of the expansion. Also how irreducible quadratics become linear-over-quadratic. Higher degree denominators aren't very useful, so it is uncommon to do this with cubic denominators or anything beyond. Usually, you'd reduce higher degree denominators to combinations of linear and quadratic factors first.
@DengGum
@DengGum 5 ай бұрын
😮😮That's real I have been looking 4
@thomasarch551
@thomasarch551 Жыл бұрын
the integral of 1/(1-x^2) is artanh (x) + C
@einsteingonzalez4336
@einsteingonzalez4336 4 жыл бұрын
I remember that there was a suspense tone. The video was edited, wasn't it?
@aannurwahidi5497
@aannurwahidi5497 5 жыл бұрын
Infinite and definite series pls
@shiveshkumar1965
@shiveshkumar1965 5 жыл бұрын
Lim n tends to infinity nx^n=? for x
@AeyZeiNS2
@AeyZeiNS2 4 жыл бұрын
Why do you do conjugate?
@zaidhamdaan1905
@zaidhamdaan1905 5 жыл бұрын
Sir , can you help me with integrating a problem I want to see how u approach to the problem . int (0 to 1/2 ) 1/{(1+x^2)√(1-x^2)} dx. Note : int = INTEGRAL SIGN AND 0 IS LOWER BOUND AND 1/2 IS UPPER IF YOU CAN HELP IT WOULD BE REALLY APPRECIATED
@prinnydude5864
@prinnydude5864 5 жыл бұрын
When i see your videos i realize How much of a dummy i am
@moshebr-c9q
@moshebr-c9q 5 жыл бұрын
I have seen this integral before no secret there....in the book
@散华-l9m
@散华-l9m 3 жыл бұрын
it's totally amazing😂
@wryanihad
@wryanihad 9 ай бұрын
There is another one Easy but wolfram doesnt agree with it!!! May be you know the reason. The techniq is Put x=arcsec(t) dx=dt/(t)sqr(t²-1) Intg(secx)=intg(dt/sqr(t²-1)=arc(cosh)(secx) Can you make an vedio on this? I checked many app that doesnt agree with my solution Where im getting wrong?
@AKSHATAHUJA
@AKSHATAHUJA 5 жыл бұрын
Red --> like Black--> comment
@kingbeauregard
@kingbeauregard 5 жыл бұрын
Two questions: 1) Why does anyone even teach the traditional crappy proof when this much better proof is available? 2) Why didn't my calculus education include teaching the importance of factoring fractions?
@stephenbeck7222
@stephenbeck7222 5 жыл бұрын
The fraction decomposition is an ‘intermediate’ integration technique typically reserved for calc 2 (along with integration by parts and trig subs). The typical method is kind of a trick but can be taught using ‘beginner’ integration methods (simple u-subs and recognizable anti-derivatives). It’s nice to have a catalog of integrals of all simple functions with known antiderivatives as early as possible, so this trick method is shown in calc 1. By the way, the trick is not much more advanced than the ‘trick’ needed to prove the product rule for derivatives, which is quite important.
@kingbeauregard
@kingbeauregard 5 жыл бұрын
@@stephenbeck7222 Fraction decomposition seems like something they should have taught back in algebra, but didn't. I'm pretty sure I was paying attention, but maybe I forgot. Even so, I never saw partial fractions used in any of my calculus classes (both high school and college). My first calculus teacher emphasized the point over and over that, in any problem, there's typically only one line of calculus and the rest is algebra, and this seems like it would have been a really good thing to utilize in the algebra. Shrug.
@puremaths2444
@puremaths2444 3 жыл бұрын
Kindly sir From this ln(1+u)+ln(1-u) ,I don't know why ur finding derivative of 1-u and changing the sign to negative ie. ln(1+u)-(1-u)
@tonymunene1592
@tonymunene1592 3 жыл бұрын
Its because of the chain rule, the derivative of ln[1+u] is done as such: d/du ln A where A=1+u = 1/A * derivative of 1+ u which is just 1 because u is positive, and the derivative of 1 is 0 so 0+1 =1...I guess you can take it from there
@mini-cafetos9410
@mini-cafetos9410 5 жыл бұрын
Wow that's so cool I always thought that was the only way to solve that integral so I assume something similar can be done to cscx?
@Kanbei11
@Kanbei11 5 жыл бұрын
Try it for yourself, that's the beauty of maths
@angelmendez-rivera351
@angelmendez-rivera351 5 жыл бұрын
Mini Cafetos Yes, except with sine.
@blackpenredpen
@blackpenredpen 5 жыл бұрын
Mini Cafetos yes!!
@AnthonyRobledo-ce8jl
@AnthonyRobledo-ce8jl 10 ай бұрын
Could've used this during my test earlier 😢
@GayAnnabeth
@GayAnnabeth 5 жыл бұрын
kinda interested in stuff about cosecant and cotangent...
@khushalreger
@khushalreger 5 жыл бұрын
Hlooooo blackpenredpen i am from INDIA
@blackpenredpen
@blackpenredpen 5 жыл бұрын
Hello!!
@Nightmare-ps9sk
@Nightmare-ps9sk 5 жыл бұрын
I wanted to buy you a derivate pullover but there is only the integrale one :(
@domanicmarcus2176
@domanicmarcus2176 Жыл бұрын
Can you do sech(x) in the same way? I tried that and got stuck because the denominator ended up being 1+u^2 and I did not know how to factor it. Can you do a video on how to integrate sech(x) without the trick, please?
@carultch
@carultch Жыл бұрын
Given integral sech(x) dx Rewrite it per its original definition: integral 2/(e^x + e^(-x)) dx Multiply top and bottom by e^x: integral 2*e^x/(e^(2*x) + 1) dx Let u = e^x, thus du = e^x dx. Rewrite in the u-world. integral 2/(u^2 + 1) du In the u-world, this integrates to: 2*arctan(u) + C Translate back to the x-world by replacing u with e^x: integral sech(x) dx = 2*arctan(e^x) + C
@Rajuramsirvi
@Rajuramsirvi 3 жыл бұрын
lntan|π/4+x/2|+c explains sir
@coniemich
@coniemich 4 жыл бұрын
Hi! I still don’t understand why you put 1/2 in the numerator
@carultch
@carultch 11 ай бұрын
You can use the Heaviside coverup method to more directly get the answer, but I'll show the first principals for it. Given: 1/(1 - u^2) Factor bottom: (1 - u) * (1 + u) Set up partial fractions, with a constant on top of each linear denominator: A/(1 - u) + B/(1 + u) Equate to the original: 1/[(1- u)*(1 + u)] = A/(1 - u) + B/(1 + u) Multiply to clear fractions and expand: 1 = A*(1 + u) + B*(1 - u) 1 = (A - B)*u + A + B There are no u-terms on the left, so this means the coefficient on the u-term on the right must be zero. The remaining A+B must add up to 1. A - B = 0 A + B = 1 Add up equations to get: 2*A = 1, which implies A = 1/2 Plug back in to solve for B, and get B = 1/2 Thus: 1/(1 - u^2) = 1/2/(1 - u) + 1/2/(1 + u) Alternatively, the Heaviside coverup method allows you to plug in u = 1, and cover-up (1 - u), as a way to directly find A. Likewise, covering up (1 + u), and letting u = -1, will allow you to directly find B
@nimmira
@nimmira 5 жыл бұрын
:) someone was peeking thru the door?
@mubarakali657
@mubarakali657 4 жыл бұрын
It's long method but easy
@bahaloicperrial8964
@bahaloicperrial8964 Жыл бұрын
It is the same as 2tanh inverse (tan(x/2)) ur method is just to long but it is good
@erentighe5091
@erentighe5091 2 жыл бұрын
I think I’ll do the first one😂😂
@layer1087
@layer1087 Жыл бұрын
My question is why can't we say that the integral is just not ln|cosx| +C
@brunobautista6316
@brunobautista6316 4 жыл бұрын
1/(1-x²) isn't it arc-coth(x)?
@brunobautista6316
@brunobautista6316 4 жыл бұрын
I had checled and yes, it could be done by hiperbolic substitution. When you hit that result, you actually are able to say "Answer is Arc-coth(u) + C" and then take that expresion to the "x world" being it "Arc-coth(sin(x)) + C" If you derive that result, yo actually end up with cos(x)/(1-sin²(x)) but that may be simplified into sec(x), wich closes this as a correct interpretation. Edit: put a "minus" were it not belong to be unintentionally
@srpenguinbr
@srpenguinbr 5 жыл бұрын
I actually thought the trick was the second method lol
@blackpenredpen
@blackpenredpen 5 жыл бұрын
That trick is actually the standard way in many books.
@nisargbhavsar25
@nisargbhavsar25 5 жыл бұрын
Great video as always. bprp #YAY
You probably haven't solved a quartic equation like this before!
12:59
integral of sqrt(tan(x)) by brute force
19:41
blackpenredpen
Рет қаралды 551 М.
Quando eu quero Sushi (sem desperdiçar) 🍣
00:26
Los Wagners
Рет қаралды 15 МЛН
人是不能做到吗?#火影忍者 #家人  #佐助
00:20
火影忍者一家
Рет қаралды 20 МЛН
Мен атып көрмегенмін ! | Qalam | 5 серия
25:41
Why I don't teach LIATE (integration by parts trick)
14:54
blackpenredpen
Рет қаралды 352 М.
I used a double integral to solve a single improper integral
11:14
blackpenredpen
Рет қаралды 34 М.
A math GENIUS taught me how to LEARN ANYTHING in 3 months (it's easy)
8:52
Python Programmer
Рет қаралды 1 МЛН
Simon Sinek's Advice Will Leave You SPEECHLESS 2.0 (MUST WATCH)
20:43
Alpha Leaders
Рет қаралды 670 М.
Indefinite Integral of sec(x)
14:13
Prime Newtons
Рет қаралды 1,2 М.
Stockfish Just Solved Chess
27:40
GothamChess
Рет қаралды 803 М.
Solving x^5=1
9:49
blackpenredpen
Рет қаралды 176 М.
Integral of sec^3x
7:01
The Organic Chemistry Tutor
Рет қаралды 168 М.
integration by parts, DI method, VERY EASY
16:59
blackpenredpen
Рет қаралды 1,5 МЛН
how Laplace solved the Gaussian integral
15:01
blackpenredpen
Рет қаралды 758 М.
Quando eu quero Sushi (sem desperdiçar) 🍣
00:26
Los Wagners
Рет қаралды 15 МЛН