Japanese | Can You Solve This?? | A Nice Nath Olympiad Algebra Problem | No Calculator Allowed

  Рет қаралды 2,073

MathsFocus

MathsFocus

Күн бұрын

Пікірлер: 5
@guyhoghton399
@guyhoghton399 5 күн бұрын
Let _(t - √x)(t - √y) = 0_ ... ① ⇒ _t² - (√x + √y)t + √(xy) = 0_ ⇒ _t² - 10t + 10 = 0_ ⇒ _t = 5 ± √15_ ⇒ _( t - (5 + √15) )( t - (5 - √15) ) = 0_ ∴ by comparison with ①: _√x = 5 + √15, √y = 5 - √15_ up to symmetry ⇒ *_x = 40 + 10√15, y = 40 - 10√15_*
@PeterArkadiev
@PeterArkadiev 5 күн бұрын
Since both equations are symmetrical, the two "different" solutions are just notational variants
@stpat7614
@stpat7614 5 күн бұрын
I did it a different and (unfortunately) longer way. sqrt(x) + sqrt(y) = 10 Since sqrt(x) >= 0, then x >= 0 Since sqrt(y) >= 0, then y >= 0 sqrt(xy) = 10 Since sqrt(xy) > 0, then x > 0 and y > 0 [sqrt(x) + sqrt(y)]^2 = 10^2 [sqrt(x)]^2 + [sqrt(y)]^2 + 2*sqrt(x)*sqrt(y) = 100 x + y + 2*sqrt(xy) = 100 x + y + 2*sqrt(xy) - x - y = 100 - x - y 2*sqrt(xy) = 100 - x - y 2*sqrt(xy)/2 = [100 - x - y]/2 sqrt(xy) = [100 - x - y]/2 [100 - x - y]/2 = sqrt(xy) Since sqrt(xy) = 10, then [100 - x - y]/2 = 10 [100 - x - y]/2*2 = 10*2 100 - x - y = 20 -[100 - x - y] = -20 x + y - 100 = -20 x + y - 100 - y + 100 = -20 - y + 100 x = 80 - y sqrt(x) + sqrt(y) = 10 sqrt(x) + sqrt(y) - sqrt(y) = 10 - sqrt(y) sqrt(x) = 10 - sqrt(y) [sqrt(x)]^2 = [10 - sqrt(y)]^2 x = 10^2 + [-sqrt(y)]^2 + 2*10*[-sqrt(y)] x = 100 + y - 20*sqrt(y) 100 + y - 20*sqrt(y) = x Since x = 80 - y, then 100 + y - 20*sqrt(y) = 80 - y 100 + y - 20*sqrt(y) - 80 + y = 80 - y - 80 + y 20 + 2y - 20*sqrt(y) = 0 2y - 20*sqrt(y) + 20 = 0 [2y - 20*sqrt(y) + 20]/2 = 0 / 2 y - 10*sqrt(y) + 10 = 0 Let u = sqrt(y), then y - 10*sqrt(y) + 10 = u^2 - 10u + 10 = 0 u = [-(-10) +/- sqrt([-10]^2 - 4*1*10)] / [2*1] u = [10 +/- sqrt(100 - 40)] / 2 u = [10 +/- sqrt(60)] / 2 u = [10 +/- sqrt(4*15)] / 2 u = [10 +/- 2*sqrt(15)] / 2 u = 5 +/- sqrt(15) u^2 = [5 +/- sqrt(15)]^2 u^2 = 5^2 + [+/- sqrt(15)]^2 + 2*5*[+/- sqrt(15)] u^2 = 25 + 15 +/- 10*sqrt(15) u^2 = 40 +/- 10*sqrt(15) Since u = sqrt(y), then u^2 = [sqrt(y)]^2 = 40 +/- 10*sqrt(15) y = 40 +/- 10*sqrt(15) y1 = 40 + 10*sqrt(15) and y2 = 40 - 10*sqrt(15) y1 > 0 and y2 > 0 Since x = 80 - y, then x1 = 80 - y1 and x2 = 80 - y2 x1 = 80 - [40 + 10*sqrt(15)] and x2 = 80 - [40 - 10*sqrt(15)] x1 = 80 - 40 - 10*sqrt(15) and x2 = 80 - 40 + 10*sqrt(15) x1 = 40 - 10*sqrt(15) and x2 = 40 + 10*sqrt(15) x1 > 0 and x2 > 0 { (x1, y1), (x2, y2) } = { (40 - 10*sqrt[15], 40 + 10*sqrt[15]), (40 + 10*sqrt[15], 40 - 10*sqrt[15]) }
@wes9627
@wes9627 6 күн бұрын
√x=5+z and √y=5-z; (5+z)(5-z)=10; z^2=15; z=±√15; x=(5±√15)^2 and y=(5∓√15)^2
@souvik7752
@souvik7752 3 күн бұрын
Use 4ab
A Very Nice Math Olympiad Problem | Solve for x ana y? | Algebra Equation
12:17
Увеличили моцареллу для @Lorenzo.bagnati
00:48
Кушать Хочу
Рет қаралды 8 МЛН
The Hardest Exam Question | Only 6% of students solved it correctly
17:42
Higher Mathematics
Рет қаралды 241 М.
Math Olympiad | How to solve for "a" and "b" in this problem?
16:34
Learncommunolizer
Рет қаралды 37 М.
Can you solve this Cambridge Entrance Exam Question?
24:48
Higher Mathematics
Рет қаралды 940 М.