I have solution 1) Factor: a^2+2ab+b^2=(b+a/2)(1+2a)=44 2) Multiply by 2 (2b+a)(1+2a)=88+a 3) write b in term of a(idk this how to say it) 2b+a= (88+a)/(1+2a) 2b= (88+a)/(1+2a) - a 4b= (176+2a)/(1+2a) - 2a 4b= 1+ 175/(2a+1) - 2a 4) find b values 175=1×175=5×35=25×7 after trying we will find the solutions which is (a,b) = {(2,8),(3,5)}
@alexanderserov3952Ай бұрын
(a+b) ^2 = 44+(b-1)*b Therefore 44+(b-1)*b is a full square. (b-1)*b is an even number and is a product of two consecutive numbers. Therefore b=5 and a=3 or b=8 and a=2. Sorry for my English.
@SALogicsАй бұрын
Very nice trick to solve this type of problems! ❤❤
@ericjb1030Ай бұрын
Case 1 could have been rejected when you found a=0 without computing b.
@билал-ж2кАй бұрын
Спасибо!!! Чудесное решение!!! ❤
@pas6295Ай бұрын
a^2=9 is s a=3. Then 6b+b=44-9=35.So 7b=35. b=5. Answer ais 3 and b is 5.
Also, the couple (0; 44) verifies the original equation. Therefore it might be acceptable!
@danikochman1351Ай бұрын
(a,b)=(2,8);(3,5);(12,-4);(-13,5);(-4,-4)
@madanmohan1221Ай бұрын
please give answer me how to prove it = +-√-1 please🙏
@pas6295Ай бұрын
a =3 b=5.
@letsfindthejams3525Ай бұрын
From one equation you can not calculate the value of two ends a and b therefore all is wrong
@pas6295Ай бұрын
Why do much of complications. Induction method is the easiest. Between 1 and 9 on seeing the equation by giving one value to one unknown and get the value of the other in order to satisfy the equation.
@JunedHussainАй бұрын
Positive integer is more than 1-9
@pas6295Ай бұрын
@@JunedHussain The very problem is such two unknown but one equation. Since it happened to lenear one you can have multiple answers. Had it been Quadratic equation you get only their roots. But in Lenear one for two unknown to have only one answer you need one more equation.
@JunedHussainАй бұрын
@@pas6295 good
@raj-nq8keАй бұрын
Comparison part is wrong .
@Chapulin28Ай бұрын
Why?
@yanssala221423 күн бұрын
Haz supuesto 3 casos pero en realidad son infinitos casos. De otro modo hablando su unica ecuacion no tiene solucion unica al tener dos incognitas. Borre esto de internet y no tupa a los estudiantes. Queridos estudiantes si a=0 entonces b = 44 si a =1 b= 4,333; si a =2 , b =8; si a=3, b =5; si a =4, b =3,111...y asi hasta infinito. El valor de a puede ser cualquier numero real y estos no son contables. No crean en este farsante y estudien matemáticas en serio.