Lambert W Function Intro & x^x=2

  Рет қаралды 323,735

blackpenredpen

blackpenredpen

Күн бұрын

Пікірлер
@blackpenredpen
@blackpenredpen 6 жыл бұрын
Hi all, hopefully this remake makes things more clear! Also try to solve x^2e^x=2 and x+e^x=2
@yonatanzoarets3504
@yonatanzoarets3504 6 жыл бұрын
Can we solve any exponent equation which contains x in the base and also in the exponent using the w function? If then, can we use this to turn the parametric form of x^y=y^x into catersian form?
@82rah
@82rah 6 жыл бұрын
To solve x^2 * e^x = 2 take sqrt root then apply W to both sides, then x = 2 W(sqrt(2)/2 ). To solve x + e^x = 2 let y =2 -x then y e^y = e^2, apply W to both sides y = W(e^2), x = 2 - W(e^2)
@suraj_mohapatra
@suraj_mohapatra 6 жыл бұрын
hey where you from actually?? Japan?
@yonatanzoarets3504
@yonatanzoarets3504 6 жыл бұрын
@@suraj_mohapatra Actually I'm from israel
@yonatanbar7311
@yonatanbar7311 5 жыл бұрын
@@yonatanzoarets3504 איזה גבר גם אני מישראל
@sidgar1
@sidgar1 6 жыл бұрын
WWE function requires the coefficient X to smack the e over the head with a chair, while the exponent X jumps off the rope with a cross-body splash. Problem solved.
@blackpenredpen
@blackpenredpen 6 жыл бұрын
: )
@PraneshPyaraShrestha
@PraneshPyaraShrestha 4 жыл бұрын
Shane McMahon function jumps from Hell in a Cell
@sxkjknjw2
@sxkjknjw2 4 жыл бұрын
WATCH OUT WATCH OUT! RKO! OUT OF NOWHERE!
@anshulanand02
@anshulanand02 4 жыл бұрын
😂😂😂😂😂😂u guys r awesome (btw randy Orton is my fav)
@U014B
@U014B 3 жыл бұрын
Me when trying to do the problems BPRP gives: 🤔🤔🤔 The answer when he reveals it: kzbin.info/www/bejne/mX_KqayCat94d80
@stem6109
@stem6109 4 жыл бұрын
I like how he always keeps mic in his hand like an apple.
@anshulanand02
@anshulanand02 4 жыл бұрын
Pokeball
@justafish5559
@justafish5559 4 жыл бұрын
it fell on his head, just like the apple fell on newton's head.
@Indiandragon
@Indiandragon 2 жыл бұрын
@@justafish5559 🥸
@carlosharmes2378
@carlosharmes2378 Жыл бұрын
xchg INT 2Fh & INT 21h (like INT 1Ch & INT 08h)
@9308323
@9308323 9 ай бұрын
He's using the Apple of Eden.
@DonPrizzle
@DonPrizzle Жыл бұрын
I’m a Mechanical Engineering student, and I alway happen to stumble upon your page when I am trying to expand my mathematical knowledge. I absolutely love your stuff, you’re always great at explaining things in an easy to follow manner. Keep it going man, you’re greatly appreciated 🙏
@omarifady
@omarifady 6 жыл бұрын
X^2*e^x=2 Take the square root Xe^(0.5x)=sqrt(2) Divide by 2 (0.5x)e^(0.5x)=0.5sqrt(2) 0.5x=W(0.5sqrt(2)) X=2W(0.5sqrt(2)) The second one X+e^x=2 Exponent both sides (e^x)*e^(e^x)=e^2 e^x=W(e^2) X=ln(W(e^2))
@blackpenredpen
@blackpenredpen 6 жыл бұрын
: )
@tbg-brawlstars
@tbg-brawlstars 2 жыл бұрын
Why aren't you taking the -ve value in first one ?
@JacobRy
@JacobRy 2 жыл бұрын
@@tbg-brawlstars you mean from square root?
@tbg-brawlstars
@tbg-brawlstars 2 жыл бұрын
@@JacobRy yes
@thecrazyemu05
@thecrazyemu05 Жыл бұрын
​@@tbg-brawlstars -sqrt(2)/2 is not in dom(W)
@了反取子名
@了反取子名 4 жыл бұрын
NO! IN THIS CHANNEL THE VARIABLE FOR W FUNCTION MUST BE FISH!
@cyberbeastry8809
@cyberbeastry8809 4 жыл бұрын
xD
@Mnzmanzmz
@Mnzmanzmz 4 жыл бұрын
It is not funny 😒😒😒
@anshulanand02
@anshulanand02 4 жыл бұрын
@@Mnzmanzmz lol
@greece8785
@greece8785 4 жыл бұрын
Our teacher in Greece puts apple as variable
@fredericchopin6445
@fredericchopin6445 3 жыл бұрын
@@Mnzmanzmz what a great way to ruin a joke
@chuckszmanda6603
@chuckszmanda6603 2 жыл бұрын
No problem on Q1 and Q2. Lambert’s W function is also quite useful in solving problems of enzyme kinetics, radiation chemistry, especially ionization kinetics, and solar cell efficiency. Thank you for the nice explanation.
@Arnie10101
@Arnie10101 6 жыл бұрын
Thank you, BPRP, that was much clearer! I waited a day and was able to reproduce the solution! I also researched the W function, out of interest, and I think that there won't be a W button on a calculator any time soon! I'll try your other problems in the pinned post but don't hold your breath!
@blackpenredpen
@blackpenredpen 6 жыл бұрын
I am glad to hear!! Thank you for your comment Arne.
@epicm999
@epicm999 3 жыл бұрын
This makes a lot of sense. -Now we need someone to solve for W-
@syedmdabid7191
@syedmdabid7191 Жыл бұрын
Now, I got it. The Geometrical meaning of W-n( m) where m is an integer. W-n ( m) = ln ( natural logarithm) of the root of the equation x^x= e ^m√√√= This is exact value of W-n (m).
@reefu
@reefu 2 жыл бұрын
I’d love if you made a video talking about the practical applications of the W lambert function. We use it in electrical engineering to simulate diode circuits, as their load line equation leads to a non linear transcendental equation.
@blackpenredpen
@blackpenredpen 2 жыл бұрын
Unfortunately, I do not have experience with that. Do you have an actual setup of the equation?
@reefu
@reefu 2 жыл бұрын
@@blackpenredpen So the load line equation becomes: i_d = -1/R(nV_t ln(i_d / I_s + 1) - V_th), (R, n, V_T, I_s, and V_th are just constants) then we have to solve for i_d. Eventually you can get this of the form x + k = e^x
@reefu
@reefu 2 жыл бұрын
In latex, the code is i_d = - \frac{1}{R} (n V_T \ln (\frac{i_d}{I_s} + 1) - V_{th})
@ShanBojack
@ShanBojack Жыл бұрын
us mathematicians generally don't care about practical applications most of the time, we're happy with how beautiful the math is lmao XD
@reefu
@reefu Жыл бұрын
@@ShanBojack Oh yeah I totally understand, I’m doing maths and physics with some electives in electrical engineering, these are cool in their own right, but I was pleasantly surprised to see it used for a practical purpose
@igorvinicius4305
@igorvinicius4305 4 жыл бұрын
Q1. Solve x^2 e^x = 2 Using square root in both sides, we get: x e^( x/2) = sqrt(2) Then, dividing the equations by 2, (x/2) e^(x/2) = sqrt(2)/2 Hence, applying the Lambert W function, W[ (x/2) e^(x/2) ] = W [ sqrt(2)/2] ==> x/2 = W[ sqrt(2)/2] And, therefore, the solution is x = 2 W[ sqrt(2)/2)]. Q2. Solve for x + e^x = 2. First note that x = ln( e^x) and e^x = ln( e^e^x)! So, we can rewrite the equation as x + e^x = 2 ln(e^x) + ln( e^e^x) = 2 Now, since ln(a) + ln(b) = ln(ab), then we can write ln(e^x * e^e^x) = 2 ==> (e^x) * e^(e^x) = e^2. Let y = ( e^x). Hence we have y* e^y = e ^2 . applying the Lambert W function, W( y* e^y) = W( e^2) y = W(e^2). Substittuing y= e^x, e^x = W(e^2) And therefore the solution is x = ln( W( e^2)).
@gautamgopal3517
@gautamgopal3517 3 жыл бұрын
Wow bro... Thanks a ton! And just to clarify, why can't the second one be done in this way? By rearranging, e^x = 2 - x (2 - x)e^(-x)=1 (2 - x)e^(2 -x) = e² Thus, 2 - x = W(e²) and x = 2 - W(e²) Or are both the same? Please feel free to correct me tho...
@ivan-nm1xn
@ivan-nm1xn 3 жыл бұрын
@@gautamgopal3517 love your solution! It's also correct.
@copperII_
@copperII_ 10 ай бұрын
Regarding the second one, x + e^x = 2 e^(x+e^x) = e^2 (e^x)e^(e^x) = e^2 e^x = W(e^2) x = ln(W(e^2)) Is this also correct?
@ВладТарасюк-ю4т
@ВладТарасюк-ю4т 10 ай бұрын
Why do you end up with x when solving the square root of x^2 but not the absolute value of x? |x| ???
@juliengrijalva8606
@juliengrijalva8606 6 жыл бұрын
BlackPenRedPen, I am 14, and I read a calculus textbook in seventh grade, and you are my favorite youtuber. If you see this please solve: \int _0^{\infty }\:cos\left(ln\left(x ight) ight)e^{-x}dx+i\int _0^{\infty \:}\:sin\left(ln\left(x ight) ight)e^{-x}dx. that is latex code, it gives the integrals. This expression is equal to i! by the gamma/Pi function, and I have not successfully evaluated it yet. You are awesome.
@mike4ty4
@mike4ty4 6 жыл бұрын
I will indeed service your solution, as part of ensuring that what happened in my own teen years when I was interested in math and, ironically enough, posing questions about integrals very much like this, does not happen again to someone else on the Internet. To give them the response that I had so much wanted and yet was met in my inquiries with so much grief. First off - I want to get the notation a bit tidied up, as that is a bit hard to read for youtube format. I suppose you mean - so correct if I'm wrong: int_{0...infty} cos(ln(x)) e^(-x) dx + i int_{0...inf} sin(ln(x)) e^(-x) dx. Is that right? If so, then we can proceed to find the integral as follows. First, condense the two integrals by linearity working in reverse: -> int_{0...infty} cos(ln(x)) e^(-x) + i sin(ln(x)) e^(-x) dx Now combine the like terms -> int_{0...infty} [cos(ln(x)) + i sin(ln(x))] e^(-x) dx. Now here's the trick, to relate it to the Gamma function and factorial: _note that cos(a) + i sin(a) = e^(ia)_ , i.e. Euler's formula, and thus this becomes -> int_{0...infty} e^(i ln(x)) e^(-x) dx. But now e^(i ln(x)) = x^i, because anything of the form e^(a ln(x)) is the same as x^a. Thus we have -> int_{0...infty} x^i e^(-x) dx. Now you can figure out what that has to do with the Gamma function and factorials.
@mike4ty4
@mike4ty4 6 жыл бұрын
@@zanea7904 aww meehhmmhhrr :) you're welcome.
@juliengrijalva8606
@juliengrijalva8606 6 жыл бұрын
@@mike4ty4 I already knew how it relates to the gamma function, I used the gamma function and Euler's identity to get the integrals. I am having trouble evaluating them. I know they dont have elementary antiderivatives, but I am trying to fin the exact answer for the definite integrals.
@mike4ty4
@mike4ty4 6 жыл бұрын
@@juliengrijalva8606 So what do you want then by a "solution" to this problem? The exact answer to the definite integals _is_ i! = Gamma(i+1). Are you trying to express this in terms of something else? As I don't think there is any simpler form for i! or Gamma(i+1), just as there is no simpler form for sin(1) (and you certainly won't get fewer symbols than either even if there were.). Usually we just leave those things in that form when writing down equations, and take a numerical approximation to get a mental idea of how big a number that is (e.g. ~0.84 for sin(1) and ~0.50 - 0.15i for i!). Actually, Dr. Peyam has a video on this one, and he mentions about as much though also shows you can represent it in terms of a rather interesting alternative integral. But still no "simpler", exact forms. Not all definite integrals have a representation in terms of "elementary numbers" any more than indefinite ones do in terms of "elementary functions". The only non-trivial value of the Gamma function that looks to have an elementary-number representation is Gamma(1/2) and associated translations by integers Gamma(n+1/2), where Gamma(1/2) = sqrt(pi). Even Gamma(1/3) and Gamma(1/4) do not seem to, though they appear as part of the representation of many other definite integrals, I believe.
@shashvatshukla
@shashvatshukla Жыл бұрын
Been grinning to myself for days because of this series of videos. Thank you!!!
@rob876
@rob876 4 жыл бұрын
Thought you might appreciate this: - written in a language that will still be around after all the others have died: -- cannot declare variables in postgresql - we're using 'from ( select 5.0*exp(5.0) as z ) as declarations' instead with recursive lambert_w as ( select z, 1 as n, case when z 1.0e-41 ) select n, w, w*exp(w) from lambert_w And in a language that will die soon (VBA): ' The Lambert W function is the function W(x) such that W(x)*exp(W(x)) = x ' or W(x*exp(x)) = x, since W(W*exp(W)) = W if we take W of both sides of the above equation. Public Function LAMBERTW(x as double) As Double Dim W, eW, WeW, WeW_x, dW As Double ' First guess for Lambert W If x
@ToshDeCamerz
@ToshDeCamerz 4 жыл бұрын
What language?
@banana6108
@banana6108 4 жыл бұрын
What language?
@82rah
@82rah 6 жыл бұрын
The LambertW function is very interesting. Can you show how to find its derivative and anti derivative? Also how to solve x ln(x) = c
@blackpenredpen
@blackpenredpen 6 жыл бұрын
82rah here's the derivative. kzbin.info/www/bejne/gqqogXVsjN2Wlbc
@82rah
@82rah 6 жыл бұрын
@@blackpenredpen Thank you! I'm subscribed, so how did I miss that?
@82rah
@82rah 6 жыл бұрын
To solve x ln(x) =c note exp( ln(x) ) ln(x) = c apply W to both sides, then ln(x) = W(c), x = exp(W(c) ) or x = c/W(c)
@prabhdensingh8740
@prabhdensingh8740 4 жыл бұрын
How do you do the lambert w function on a normal scientific calculator??
@82rah
@82rah 4 жыл бұрын
@@prabhdensingh8740 To do numerical calculations, you need a computer algebra system like Maple or Mathematica, or use WolframAlpha on internet.
@tjc9514
@tjc9514 4 жыл бұрын
Dude this was awesome. I really appreciate you sharing this, great job!
@hanzhang3589
@hanzhang3589 6 жыл бұрын
If u need to define a new function w, why not define u(x) = inverse function of x^x, and say solution to x^x = 2 is just u(2)?
@yoavcarmel1245
@yoavcarmel1245 6 жыл бұрын
That's because the W function has a series expansion so you can calculate it's values
@BeauBreedlove
@BeauBreedlove 5 жыл бұрын
@@yoavcarmel1245 u(x) does too
@unfetteredparacosmian
@unfetteredparacosmian 5 жыл бұрын
@@yoavcarmel1245 but the W function is actually useful in other contexts as well. You could define the W function in terms of the U function as well but the W is more useful on its own. (Also W is defined at x = 0)
@Kes22497
@Kes22497 5 жыл бұрын
I mean, you totally could. That is a valid definition, as long as you are careful about the domain and range of x^x and u(x), and that is the end of it. But the problem now becomes that you have no idea what this function u(x) behaves like. It doesn't really tell you anything useful until you spend a long time studying the properties of u(x). This is the reason you would usually want to reduce the equation in the form of known solutions. If you can get the solution in terms of functions that have already been studied, that's a lot more useful because now you know the behaviour of it and can actually calculate the value by plugging it in, instead of a priori analysing your new function.
@AlgyCuber
@AlgyCuber 4 жыл бұрын
ssqrt(x) is the inverse of x^x
@mkjaiswal11
@mkjaiswal11 3 жыл бұрын
I am just a 9th grade student and I just know the Complex Numbers, but idk why I really enjoy watching this channel. BTW please check if it's correct for the questions given Answer for Q1 :- x = W(2/x) Answer for Q2 :- x= W(2x - x^2)
@RobinHillyard
@RobinHillyard 2 жыл бұрын
Thanks, it's good! There's a question related to sorting regarding the fewest comparisons between merge sort (n lg n) and insertion sort (n^2 / 4) for small n. It's easy to determine that the curves cross at n = 16. But they also cross closer to n = 1. I was able to use the Lambert W function (my first real application of it) to find the other solution, approx. 1.24, i.e., W(- ln(2) / 4)
@ricenoodles5831
@ricenoodles5831 2 жыл бұрын
Same here! I was reading the introduction to algorithms 4th edition and realized I couldn't solve the comparison of insertion sort of 8n^2 < merge sort of 64nlog(n)
@Heavenira
@Heavenira 4 жыл бұрын
OMG I got the first one! It's 2*W(sqrt(2)/2)!!! Thanks for the amazing problem!
@szshyng5599
@szshyng5599 3 жыл бұрын
I was stuck for almost 20 minutes and when i saw your ans i tried to work backwards and then boom got it. Thx a lot 😁
@frogmcribbit8778
@frogmcribbit8778 5 жыл бұрын
2:50 Let's say we would want to "solve" xe^(x) = -0,1. If I graph the xe^(x) function with the domain being R, I should have two solutions. The W function is the reciprocal of xe^(x) only for the "right side" of the function (for x>= -1). What do we do for the "left side" of xe^(x)? Would we need to define a "second Lambert W function" that covers the reciprocal of xe^(x) for x
@ЮрійЯрош-г8ь
@ЮрійЯрош-г8ь 6 жыл бұрын
Thanks for the video. In the first equation we eliminate x=0 by substitution, and then view two cases x>0 and x0 we get: (x/2)e^(x/2)=(2^(1/2))/2 By applying Lambert W function and rearanging: x=2W((2^(1/2))/2) In the case of x
@h4c_18
@h4c_18 6 жыл бұрын
Just do e(x+e^x)=e^2, you get e^x e^(e^x) = e^2, then e^x=W(e^2) and leaves x=ln(W(e^2)) (x-2)+e*(x-2+2)=0 e^2=(2-x)*e^(2-x) 2-x=W(e^2) x=2-W(e^2). Hope that helped ;)
@shokan7178
@shokan7178 6 жыл бұрын
I prefer the #YAY intro
@aarnaify
@aarnaify 5 жыл бұрын
Second problem: x + e^x = 2 Take exponential of both sides: e^x * e^e^x = e^2 u*e^u = e^2 Let u = e^x u = W(e^2) Since x = ln u x = ln(W(e^2))
@kimjunsik540
@kimjunsik540 3 жыл бұрын
you are so clever
@nil789-d2f
@nil789-d2f 5 ай бұрын
After the video was uploaded around 5 years earlier, atlast i found the answer of the problem i had 6 years back when i was a school student.
@gazarkhalid840
@gazarkhalid840 6 жыл бұрын
This was extremely amazing. It explained a way difficult concept in an exceptionally simple manner. Really loving it. #YAY
@manudewi
@manudewi 4 жыл бұрын
Wow such a great explanation I just had to try those tasks (Q1 und Q2).
@studiousboy644
@studiousboy644 3 жыл бұрын
1. 2w(1/root2) 2.ln(w(e²)) Damn took me around 10 attempts to do these. Nice.
@TheRambo010
@TheRambo010 3 жыл бұрын
quite interesting, I found x=2-W(e²) for the second equation, and both are correct results, although I cant work out this identity of ln(w(e²))=2-W(e²)
@infinite1.0
@infinite1.0 3 жыл бұрын
@@TheRambo010 ln(W(e^2)) = 2 - W(e^2) ln(W(e^2)) + W(e^2) = 2 ln(W(e^2)) +ln(e^W(e^2)) = 2 ln(W(e^2)*e^W(e^2)) = 2 Remember then that W(x)*e^W(x) = x ln(e^2) = 2
@silvermica
@silvermica Жыл бұрын
So, that’s the Lambert function! That’s so rad.
@leif1075
@leif1075 4 жыл бұрын
Wait at 2:20, the notation seems contradictory, if W(x) equals f^-1(x) aka the inverse of f(x) and f(x) equals xe^x, then why doesnt W(x) equal x...that wiuld be the correct implication of that notation..
@blackpenredpen
@blackpenredpen 4 жыл бұрын
W(f(x))=x Where f(x)=xe^x
@leif1075
@leif1075 4 жыл бұрын
@@blackpenredpen Thanks yea sorry it's confusing notation. Question is the lambert function the only waybtonsolve the x^x^3 porblem or is there some other way that tou know of?
@ambroseaurelian9696
@ambroseaurelian9696 4 жыл бұрын
We love you man you are the best teacher.
@crisp-cornflake3016
@crisp-cornflake3016 2 жыл бұрын
I know it’s an old video but: Q1: Take the sqrt and divide by two, x=2w(sqrt(2)/2) Q2: raise both sides to the e: e^(x+e^x) = e^2; this means that e^(x)*e^(e^x) = e^2; therefore e^x = W(e^2), so x = ln(W(e^2)) which is roughly .44285
@henningnagel1977
@henningnagel1977 4 жыл бұрын
f(x)=x*e^x is an awesome function! You take the derivatives and get f'(x)=(x+1)*e^x; f''(x)=(x+2)*e^x; f'''(x)=(x+3)*e^x; ...; antiderivate is F(x)=(x-1)*e^x+C
@mmmmmmok5292
@mmmmmmok5292 Жыл бұрын
woah
@benjaminparra4672
@benjaminparra4672 2 жыл бұрын
A1: aW(b^(1/a)/a where a=b=2. And A2: 2-W(ee) where ee=e^2
@defect8352
@defect8352 Жыл бұрын
You are awesome man. It was so easy to understand.
@Chrisreynolds0724199
@Chrisreynolds0724199 Жыл бұрын
Incredible. Excellent teacher, thank you very much.
@night4272
@night4272 5 жыл бұрын
The omega function is so cool, I could say is my favorite one, but, it has a problem, if you want to calculate the omega function of a number, it can have more the one solution, so, if you you Wolfram Alpha, it only gives you one, so, if you want to know the other (in case there is), you have to use the Newtown's method, at least, that's what I see
@mennoltvanalten7260
@mennoltvanalten7260 5 жыл бұрын
Looking at another video of BPRP, the one where he solves x^2=2^x using this function W, wolframalpha has multivariate functions. Perhaps the Omega function is also a multivariate function in WA?
@jakobthomsen1595
@jakobthomsen1595 Жыл бұрын
Thanks for the explanation! Now Lambert W appears less mysterious 🙂
@weetabixharry
@weetabixharry 3 жыл бұрын
I think he should name his son "Lambert W. Redpen". Perfect name for a math enthusiast!
@I_like_pi_
@I_like_pi_ 6 жыл бұрын
1. 2*W(√2/2) 2. 2-W(e^2)
@libelldrian173
@libelldrian173 4 жыл бұрын
I can't stop smiling.
@element1192
@element1192 Жыл бұрын
q1: x=W(2/x) =~0.9012 q2: x=W(2x-x^2) =~0.4429 (solving with W for q2 produces an extraneous solution of zero, be careful!)
@abs0lute-zer061
@abs0lute-zer061 5 жыл бұрын
Why are these sooo satisfying to watch?
@Pritzelita
@Pritzelita 6 жыл бұрын
Is it possible to find the actual value of the lambert w function in terms of x?
@blackpenredpen
@blackpenredpen 6 жыл бұрын
I will work out a series expansion of W(x) next week. : )
@JonathanTot
@JonathanTot Жыл бұрын
I think it would have been really good for you to add the comment that for e^ln(x) = x, over the real this is valid only for x>0 (the range of the exponential, the domain of logarithm) and similarly, your equations labeled (1) and (2) are valid: (1) for x>=-1 (the domain of the original function) and 2) x>=-1/e (the domain of Lambert-W) the solution of x^x=2 simplifies to ln(2)/W(ln(2))
@alexandreman8601
@alexandreman8601 4 жыл бұрын
Why is the domain of xe^x [-1;+infinity], why isn't is just all the real numbers?
@hema.bhandari
@hema.bhandari 4 жыл бұрын
Because there is minima at -1. If you include numbers lower than -1 the function will become many-one function . i.e two pre images for one image and hence the function is non invertible. So domain is [-1,∞].
@erenyalcn9393
@erenyalcn9393 4 жыл бұрын
@@hema.bhandari Nice explanation 👍
@nitinsanatan293
@nitinsanatan293 6 жыл бұрын
Sir,What exactly can be the value of W...If we have to use it in another expression like e^productlog(ln3),then how to find it??
@gourabghosh5574
@gourabghosh5574 6 жыл бұрын
Answer to question 1 is 2 (w (1/sq root (2)))
@yonatanzoarets3504
@yonatanzoarets3504 6 жыл бұрын
The solution for the first equation is w(1/√2) and the solution for the second equation is ln(w(e^2))
@yonatanzoarets3504
@yonatanzoarets3504 6 жыл бұрын
@Sashank Sriram Well for the first one, you are very right, 1/√2=√2/2 , and I forgot to add the 2 before the w(1/√2) For the second one, I raised both sides to the power of e, so e^(x+e^x)=e^2, but e^(x+e^x)=(e^x)•(e^(e^x))=2 Then I inserted both sides into the w function, so e^x=w(e²) , so x=ln(w(e²))
@yonatanzoarets3504
@yonatanzoarets3504 6 жыл бұрын
@Sashank Sriram Oh, I have just understood that that the solutions are equal to each other Let w(e²)=t ln(w(e²))=ln(t)=ln(t)+t-t=ln(t)+ln(e^t)-t=ln(t•e^t)-t=ln(w(e²)•e^w(e²))-w(e²)=ln(e²)-w(e²)=2-w(e²)
@herardpique7302
@herardpique7302 Жыл бұрын
x^x = 1000, x = approximately 4,5555
@ricenoodles5831
@ricenoodles5831 2 жыл бұрын
Q1: Starting from x^2*e^x = 2, divide both sides by x^2 e^x = (2)/(x^2) then take ln of both sides x = ln((2)/(x^2)) knowing the log property that ln(a/b) = ln(a)-ln(b), x = ln(2)-ln(x^2) then using the log property that ln(a^b)=bln(a) x = ln(2)-2ln(x^2) divide everything by 2 x/2 = ln(2)/2-ln(x) raise everything by e again e^(x/2)=e^(...) then use the exponent property that a^(b-c) = a^b/a^c to parse the e^(...) e^(x/2)=e^(ln(2)/2)/(x) multiply both sides by x xe^(x/2)=e^(ln(2)/2) divide both sides by 2 (x/2)e^(x/2)=e^(ln(2)/2)/2 at this point we can use the lambert function where w(xe^x)=x x/2=w(e^(ln(2)/2)/2) x=2w(e^(ln(2)/2)/2)
@davidappell3105
@davidappell3105 4 жыл бұрын
Equivalently, x= invW(2), the inverse-W function of 2.
@Titurel
@Titurel Жыл бұрын
I was so confused for the first 15 minutes I thought about this. Then I realized I could just imagine W(x) was LN(x) and xe^x was just e^x. Phewww
@DrQuatsch
@DrQuatsch 5 жыл бұрын
x^2 * exp(x) = 2. Square root on both sides --> x * exp(x/2) = sqrt(2). Divide both sides by 2 --> x/2 * exp(x/2) = sqrt(2)/2. W Lambert function on both sides --> W((x/2)*exp(x/2)) = x/2 = W(sqrt(2)/2). Multiply both side by 2 --> x = 2 * W(sqrt(2)/2). x + exp(x) = 2. Substitute x = -t + 2 --> (-t + 2) + exp(-t - 2) = 2, which you can write as exp(-t) * exp(-2) = t by rearranging terms. Multiply both sides with exp(t) to get t * exp(t) = exp(-2). W Lambert function on both sides --> W(t * exp(t)) = t = W(exp(-2)). Substitute t = 2 - x back in --> 2 - x = W(exp(-2)), so x = 2 - W(exp(-2)).
@Harlequin_3141
@Harlequin_3141 4 жыл бұрын
Random typo correction on your second answer a year later :D you substituted -t-2 instead of -t+2 right off the bat so your answer is slightly off. Doing the same thing as you did I was able to show that x = 2 - W(exp(2))
@sthinvc
@sthinvc 4 жыл бұрын
Can W(x) be calculated by a normal scientific calculator?
@nooruddinbaqual7869
@nooruddinbaqual7869 10 ай бұрын
As per Lambert Function,as I have understood it, anything multipled by e raised to power that thing is equal to that thing. But how can it be so? Does W carry some hidden value?
@spockfan2000
@spockfan2000 6 жыл бұрын
WWE: I thought I was gonna see Randy Orton in your video :)
@blackpenredpen
@blackpenredpen 6 жыл бұрын
Maybe next time.
@namrnam5413
@namrnam5413 3 жыл бұрын
Love when you say yes yes yes
@shivammalluri6403
@shivammalluri6403 6 жыл бұрын
Do you mind doing the integral of (1-x^2)/(x^4+3x^2+1). Thanks👍
@Edelce
@Edelce 4 жыл бұрын
0:35 gotta love that O.G bra
@jerichorhodesalambatin5209
@jerichorhodesalambatin5209 2 жыл бұрын
Hi sir. Can we use scientific calculator to solve that W(x) instead of the wolfram website ?
@alejandrodelabarra2838
@alejandrodelabarra2838 4 жыл бұрын
¿Could you use your expertise to teach us how to solve stability problems through the "root-locus method"?? It uses the Laplace Transfom to see if a circuit oscilates or not....
@lumnisxate_192
@lumnisxate_192 Жыл бұрын
Q1. x²e^x = 2 Take sqrt both (x² e^x)^(1/2) = 2^(1/2) Simplify x e^(x/2) = 2^(1/2) Divide both sides by 2 (x/2) e^(x/2) = (√2)/2 W both x/2 = W((√2)/2) * 2 both x = 2(W((√2)/2)) //
@zestyorangez
@zestyorangez 6 жыл бұрын
This was great!
@wafimarzouqmohammad8054
@wafimarzouqmohammad8054 4 жыл бұрын
Why is the domain of xe^x (-1, infinity) and not (-infinity, infinity)?
@Alex_Deam
@Alex_Deam 4 жыл бұрын
The domain of xe^x isn't that, but that's the only valid portion of its domain you can use with Lambert W because otherwise you have two y values for some values of x for xe^x, which means its inverse would be undefinable. That's what he means by the "horizontal line test".
@curtiswfranks
@curtiswfranks 3 жыл бұрын
6:10 That is the inverse of the lineärithm (x log(x)).
@curtiswfranks
@curtiswfranks 3 жыл бұрын
... As you demonstrated at 6:36...
@vincentbutton5926
@vincentbutton5926 2 ай бұрын
I'm baffled by the Lambert W function. It just seems to be a magic black box and a lookup table. Where does the numerical value of say W(ln2) come from? You could have a similar lookup table for Sin(ln2), or "magic"(ln2), but that doesn't tell me how you got it. Can you show us a way to derive the numerical value of W(ln2) or any non-trivial, well-known value of W(x)?
@ludovic-h7l
@ludovic-h7l 4 жыл бұрын
Congratulations teacher verry good
@غرائب-ق9غ
@غرائب-ق9غ 2 жыл бұрын
1. I found x= 2× w((racine2)/2) 2. I found x= e power(w(ln2)) From morroco 🇲🇦🇲🇦
@bowielam7866
@bowielam7866 2 жыл бұрын
But 1.5596 ^ 2 = 2.4317 which is not too close to 2? And even worse if we try 1.5592 ^ 2 = 2.4311. What I mean is that why the output is 1.5596 when there is other numbers that is closer to 2?
@bhavydugar6665
@bhavydugar6665 3 жыл бұрын
I am thinking on putting a petition in the international math committee to change the name of lambert function to Steve function or even cooler chow function
@thexoxob9448
@thexoxob9448 7 ай бұрын
Doesn't xe^x seem a bit arbitrary to have it's explicit inverse? I feel like factorial is a more important function that has yet to have an inverse (if you say factorial is not injective then make it have multiple branches like the lambert w function has)
@henokhagos5144
@henokhagos5144 2 жыл бұрын
i dont word i really thank you
@syedmdabid7191
@syedmdabid7191 Жыл бұрын
But there no use of solving exponential equation by Lambert Wilson method. It's nothing but a notation. To find the root we 've to apply the Newton- Raphson method.
@THE_FIXOR
@THE_FIXOR 2 жыл бұрын
why did we chose the domain of the function as Df = [-1;+00[ even if its actually R ?
@idontknowwhathandle2use
@idontknowwhathandle2use 3 жыл бұрын
0:35 "The original G" 2:19 "What the F is this though?" O yeah, it's all adding up.
@uzz4943
@uzz4943 4 жыл бұрын
why w(x) is equal to productlog(x)? what is the formula to calculate w(ln2)? if we are calculating it by online calculator, we can also calculate the answer of "x^x=2" by online calculator. there would not require any w(x) function. so we need a formula to calculate w(ln2) by general calculation not by online calculator.
@haithammajid4078
@haithammajid4078 3 жыл бұрын
Nice work my friend.
@wayneosaur
@wayneosaur 2 ай бұрын
How is W(x)e^W(x) = x? That seemed to be pulled out of thin air and does not seem correct.
@osuNoobCast
@osuNoobCast 6 жыл бұрын
i saw newest video and came here to know what w(x) is
@carlosharmes2378
@carlosharmes2378 Жыл бұрын
is this about the formal power series and/or multiply changes at this time..?
@tommyliu7020
@tommyliu7020 Жыл бұрын
Do we need to worry bout which branch of the function we are in? Is the W function multi valued?
@ricenoodles5831
@ricenoodles5831 2 жыл бұрын
Q2: I tried u-subbing with u = e^x and ln(u) = x, then solving the rest of the equation in a similar manner to Q1
@whatelseison8970
@whatelseison8970 3 жыл бұрын
Suppose we lived in an alternate timeline where instead of having W(x) be the inverse function of xe^x they wanted it to be the inverse of x^x. How would we use that function to solve xe^x=2?
@seroujghazarian6343
@seroujghazarian6343 2 жыл бұрын
Suppose W(x) WAS the inverse function of x^x xe^x=2 Let u=e^x uln(u)=2 u^u=e^2 u=W(e^2) e^x=W(e^2) x=2/W(e^2) ez
@Hey_Fun_for_life
@Hey_Fun_for_life Жыл бұрын
Sir why does domain of Xe^X has a domain starts from -1? Please clarify. Thanks for the video.
@factsheet4930
@factsheet4930 4 жыл бұрын
Is the answer you got irrational or is there no way to know? Likewise since I actually got here because of the equation x=e^(x-2), do we know if the solutions are in fact irrational?
@lumbybronzearm
@lumbybronzearm 4 жыл бұрын
I got: x = W(sqrt(2)) for the first problem, and x=ln(W(exp(2))) for the second problem. Can anyone verify if these are correct or incorrect for me, please? I have never attempted a Productlog problem before.
@walaefitout1717
@walaefitout1717 4 жыл бұрын
My first time trying too... I got x = 2W(1/sqrt(2)) on the first one and x=ln(W(exp(2))) on the second one.
@m_stifeev
@m_stifeev 4 жыл бұрын
1) x = 2W(sqrt(2)/2); 2) x = lnW(e^2)
@jamesrockybullin5250
@jamesrockybullin5250 2 жыл бұрын
2:19 was not expecting that lol
@akramkssiri2642
@akramkssiri2642 Жыл бұрын
Hi , does the equation W(x) = 0 has a solution ? Thanks for the awesome content
@SimonPegasus
@SimonPegasus Жыл бұрын
You can undo the W from the x and then turn 0 into 0e^0 so it would be x = 0e^0 which is equal to 0.
@thomasblackwell9507
@thomasblackwell9507 6 жыл бұрын
Please, can you suggest a good reference to study this?
@suvarshachennareddy4968
@suvarshachennareddy4968 4 жыл бұрын
Cant u use newtons method for finding roots....uk if u just wanna approximate
@SakiJ93
@SakiJ93 6 жыл бұрын
Sorry, but why the Domain of f(x) start from -1? If I put (for ex.) -2 into the x, i get f(x)= -2*(1/e^2) isn't?
@omopsingh3992
@omopsingh3992 6 жыл бұрын
How this new function. Benefits us ? I mean why is this definition so good that we adopted this in mathematics .like I know the uses of ln but what about W?
@joluju2375
@joluju2375 5 жыл бұрын
I wondered too. Wikipedia gives some hints. However, among all the functions we could invent for solving a given class of problems, it's handy to choose only one, so, why not W(x) even if others would do the job too. Ok, I didn't really answer your question :)
@marceloescalantemarrugo6391
@marceloescalantemarrugo6391 6 жыл бұрын
Another form of the answer is: x = ln(2)/W(ln(2))
@JJ_TheGreat
@JJ_TheGreat 5 жыл бұрын
How do we know that f(x) = xe^x when calculating the f(x) whether f-1(x) ["f inverse"] is the Lambert W function, since the original equation in your example is x^x? For example, where does the "e^x" come from? Are we raising e to the x^x, then e^xlnx power and simplifying?
@BoyNextDoor1729
@BoyNextDoor1729 6 жыл бұрын
What do you mean that the graph f(x) = xe^x doesn't pass the horizontal line test? When I graph the function in desmos, it provides a function whose domain is (-inf, inf).
@gaudiowen
@gaudiowen 3 жыл бұрын
You may remember that W(x) is the inverse of f(x). The domain of f(x) is, like you said, (-inf, inf). But f(x) has inverse only for (-1, inf).
@citizenalex1934
@citizenalex1934 6 жыл бұрын
I'm a simple kid. I saw WWE logo on your thumbnail, I watched the video. I pressed like.
@blackpenredpen
@blackpenredpen 6 жыл бұрын
Juni Raslin thank you!!
@mike4ty4
@mike4ty4 6 жыл бұрын
aww meehhmmhhrr :)
@Zumerjud
@Zumerjud 2 жыл бұрын
Very nice video :D
@andreimiga8101
@andreimiga8101 5 жыл бұрын
Why does xe^x have the domain [-1;inf)? Can you not plug in -2 and get -2/e^2
@madelinew2884
@madelinew2884 3 жыл бұрын
Why the domain of x*e^x would be from -1... I don't get it...
solving the tetration equation x^x^x=2 by using Newton's Method
7:02
blackpenredpen
Рет қаралды 111 М.
Lambert W Function
14:35
Prime Newtons
Рет қаралды 692 М.
99.9% IMPOSSIBLE
00:24
STORROR
Рет қаралды 31 МЛН
人是不能做到吗?#火影忍者 #家人  #佐助
00:20
火影忍者一家
Рет қаралды 20 МЛН
2 different exponential equations
9:19
blackpenredpen
Рет қаралды 208 М.
The famous exponential equation 2^x=2x (ALL solutions)
10:28
blackpenredpen
Рет қаралды 242 М.
How to Solve Weird Logarithm Equations
9:34
blackpenredpen
Рет қаралды 249 М.
What is the Lambert W Function (Introduction )/ Part 1
7:50
Intellecta
Рет қаралды 54 М.
The Lambert W Function Introduction
11:58
Mathoma
Рет қаралды 83 М.
Introduction to the Lambert W Function
10:41
Physics and Math Lectures
Рет қаралды 54 М.
Derivative of Lambert W function
13:07
Prime Newtons
Рет қаралды 41 М.
Integrating Lambert W Function
12:59
Prime Newtons
Рет қаралды 52 М.