Math Olympiad | A Nice Algebra Problem | Find the values of X

  Рет қаралды 137,486

Learncommunolizer

Learncommunolizer

Күн бұрын

Пікірлер: 96
@is7728
@is7728 4 ай бұрын
Let h be x + 1. (h + 1)^4 + h^4 = 17 h^4 + 4h^3 + 6h^2 + 4h + 1 + h^4 = 17 2h^4 + 4h^3 + 6h^2 + 4h - 16 = 0 h^4 + 2h^3 + 3h^2 + 2h - 8 = 0 When h = 1, the eqn is satisfied. ∴ x = 0 h^3 + 3h^2 + 6h + 8 = 0 When h = -2, the eqn is satisfied. ∴ x = -3 h^2 + h + 4 = 0 h = ( -1 +- √(1 - 16) ) / 2 = -0.5 +- √15 i / 2 ∴ x = -1.5 +- √15 i / 2
@xyz9250
@xyz9250 2 ай бұрын
If had to go through expansion why not just expand the original equation and solve it directly? But here is how I did it. (x+2)^4 - 1 + (x+1)^4 - 4^2 =0 …. Will get x = -3 and 0 pretty quickly, then use the formula to get the two solutions of complex numbers
@oahuhawaii2141
@oahuhawaii2141 2 ай бұрын
*complex numbers
@xyz9250
@xyz9250 2 ай бұрын
You are correct. Edited
@oahuhawaii2141
@oahuhawaii2141 2 ай бұрын
That's a nice way to factor the quartic equation! (x+2)⁴ + (x+1)⁴ = 17 = 2⁴ + 1⁴ (x+2)⁴-1⁴ + (x+1)⁴-2⁴ = 0 ((x+2)²-1²)*((x+2)²+1²) + ((x+1)²-2²)*((x+1)²+2²) = 0 (x+1)*(x+3)*(x²+4*x+5) + (x-1)*(x+3)*(x²+2*x+5) = 0 (x+3)*[(x+1)*(x²+4*x+5) + (x-1)*(x²+2*x+5)] = 0 (x+3)*[ x*Σ + 1*∆ ] = 0 (x+3)*[ x*(2*x²+6*x+10) + 1*(2*x) ] = 0 (x+3)*[ 2*x*(x²+3*x+5 + 1) ] = 0 2*x*(x+3)*(x²+3*x+6) = 0 x = 0, -3, (-3 ± i*√15)/2 Most folks would the sum of differences of 4th powers by pairing like terms: (x+2)⁴-2⁴ + (x+1)⁴-1⁴ = 0 . And the next step will reveal x can be factored out easily. But that leaves a cubic polynomial -- it may be hard to find x+3 as a factor to reduce that down. By pairing the counterintuitive way [(x+2)⁴-1⁴ + (x+1)⁴-2⁴ = 0], factor x+3 is removed first, leaving the cubic polynomial that's easily reduced by factoring out x. This is useful when someone creates a challenge with the sum of the 4th power of consecutive integers: 0⁴+1⁴=1, 1⁴+2⁴=17, 2⁴+3⁴=97, 3⁴+4⁴=337, 881, 1921, 3697, 6497, 10657, 16561, ...
@maximcoroli8306
@maximcoroli8306 4 ай бұрын
17 = 1**4 +2**4 or (-1)**4+(-2)**4 х+2=2, х+1=1 => x=0 x+2=-1, x+1=-2 = x=-3
@СалохиддинФазлиддинов-е5м
@СалохиддинФазлиддинов-е5м 4 ай бұрын
Is here anybody, who automatically calculated that x=0😂😂 Being honest, I didn't watch till the end, because I already thought that 2^4+1^4 equals to 17 And second x equals to -3
@laoxian899
@laoxian899 4 ай бұрын
Yes, at the first glance one can get the two results, since both parentheses must be 1/-1 and 2/-2.
@abbasmasum1633
@abbasmasum1633 4 ай бұрын
The goal is to learn how to apply several rules of algebra to find the solutions. This channel is the best there is and PLEASE stop offering guess and check solutions. He's connecting the problem to so many profound concepts. I truly like his methods and if they are too long, then at least offer a better way.
@professorsargeanthikesclim9293
@professorsargeanthikesclim9293 4 ай бұрын
Did you also find the complex solutions?
@robertloveless4938
@robertloveless4938 3 ай бұрын
I did. Had the number NOT been -1, 0, or +1, I would have worked it out. But a quick inspection worked this time.
@heikelawin3771
@heikelawin3771 3 ай бұрын
Natürlich! Diese Lösung springt einem ja mit 'nem nackten Ar... ins Auge!!!!
@henkn2
@henkn2 4 ай бұрын
It might be helpful not to the use the same letters (a, b and c) with different meanings (first a = x + 2 and b = x + 1, later they are used in the equation ax^2 + bx + c = 0). Furthermore the non-real (complex) solutions have been skipped
@opulence3222
@opulence3222 4 ай бұрын
Very confusing procedure.
@oahuhawaii2141
@oahuhawaii2141 2 ай бұрын
He's going for obfuscation. The direct solution is faster, and less prone to mistakes.
@ashkanshekarchi7753
@ashkanshekarchi7753 4 ай бұрын
Explain the solving strategy and ideas rather than a long confusing mechanical calculation
@oahuhawaii2141
@oahuhawaii2141 2 ай бұрын
His obfuscated way is unnecessarily complicated. It's faster to do the binomial expansion and solve: (x⁴ + 4*2*x³ + 6*2²*x² + 4*2³*x + 2⁴) + (x⁴ + 4*x³ + 6*x² + 4*x + 1) = 17 2*x⁴ + 12*x³ + 30*x² + 36*x + 17 = 17 x⁴ + 6*x³ + 15*x² + 18*x = 0 ‡ x*((x + 3)*x² + (x + 3)*3*x + (x + 3)*6) = 0 x*(x + 3)*(x² + 3*x + 6) = 0 x = 0, -3, (-3 ± i*√15)/2 { ‡ In the original equation, the values in parentheses work for 2⁴+1⁴ and (-1)⁴+(-2)⁴ . Thus, we know x = 0 and -3 . We know x and x+3 are factors. } In general, a² - b² isn't a perfect square. ∆ is called the "discriminant". At 07:20, he can complete the square: z² + 2*z + 1 = 9 , z = a*b z + 1 = ±3 z = -1 ± 3 = 2, -4 There's no reason to reject the complex solutions.
@jenskluge7188
@jenskluge7188 3 ай бұрын
since x=0 is a solution we can already factor that out, and for polynomes of degree 3 there are formulas. if there is another obvious solution the problem can be further simplied to a 2nd degree polynomial.
@oahuhawaii2141
@oahuhawaii2141 2 ай бұрын
Yes, there's another obvious solution. The exponent is 4, an even number, so ± bases yield the same value. (2)⁴ + (1)⁴ = 17 , for x = 0 (-2)⁴ + (-1)⁴ = 17 But the terms must be swapped to match the equation: (-1)⁴ + (-2)⁴ = 17 , for x = -3 Thus, x and x+3 are factors of the quartic equation. The missing factor is a quadratic polynomial that yields a complex conjugate pair of roots, (-3 ± i*√15)/2 .
@joiceroosita5317
@joiceroosita5317 4 ай бұрын
Mine is more simple. (x+2)⁴ + (x+1)⁴ = 17 [(x+1)+1]⁴ + (x+1)⁴ = 17 example ; y = (x+1) (y+1)⁴ + y⁴ = 17 y⁴ + 4y³ + 6y² + 4y + 1 + y⁴ - 17 = 0 2y⁴ + 4y³ + 6y² + 4y - 16 = 0 2(y⁴ + 2y³ + 3y² +2y - 8) = 0 Lets find the factors of y Using polinomial Factors of y⁴ + 2y³ + 3y² + 2y - 8 = 0 (y - 1) → y = 1 → 1+2+3+2-8 = 0 (ok!) (y + 2) → y = -2 → -8+12-12+8 = 0 (ok.!) The others y = i So, we get y = 1 and y = -2 (y = x+1) y = 1 x+1 = 1 → x = 0 (check ok.!) y = -2 x+1 = -2 → x = -3 (check ok.!) So, x = 0, -3
@oahuhawaii2141
@oahuhawaii2141 2 ай бұрын
Factor out x and x+3 to leave a quadratic equation. You can easily get the complex conjugate pair of roots, (-3 ± i*√15)/2 .
@oahuhawaii2141
@oahuhawaii2141 2 ай бұрын
It's faster to do the binomial expansion and solve. Your obfuscated way is unnecessarily complicated. In general, a² - b² isn't a perfect square. ∆ is called the "discriminant". At 07:20, you can complete the square: Z² + 2*Z + 1 = 9 , Z = a*b Z + 1 = ±3 Z = -1 ± 3 = 2, -4 There's no reason to reject the complex solutions.
@oahuhawaii2141
@oahuhawaii2141 2 ай бұрын
(x⁴ + 4*2*x³ + 6*2²*x² + 4*2³*x + 2⁴) + (x⁴ + 4*x³ + 6*x² + 4*x + 1) = 17 2*x⁴ + 12*x³ + 30*x² + 36*x + 17 = 17 x⁴ + 6*x³ + 15*x² + 18*x = 0 x*(x³ + 6*x² + 15*x + 18) = 0 x*((x + 3)*x² + (x + 3)*3*x + (x + 3)*6) = 0 x*(x + 3)*(x² + 3*x + 6) = 0 x = 0, -3, (-3 ± i*√15)/2
@AlexMarkin-w6c
@AlexMarkin-w6c 3 ай бұрын
Let y=x+1.5, then (y+0.5)^4+(y-0.5)^4=17 (4y^2-9)(4y^2+15)=0; y=+/-3/2 and y= +/-isqrt(15)/2. If y=x+1.5, then x=-3, x=0, , x=-1.5 +/- isqrt(15)/2
@is7728
@is7728 4 ай бұрын
2^4 + 1^4 = 17 (-1)^4 + (-2)^4 = 17
@salamoujda3651
@salamoujda3651 3 ай бұрын
thanks bravo!
@thomassidoti5496
@thomassidoti5496 4 ай бұрын
Its a 4th degree equation. Theres 4 solutions. You missed the two complex solutions; x= (-3/2) +or- (radical(15)i/2). This is an OLYMPIAD question. Those solutions belong there
@oahuhawaii2141
@oahuhawaii2141 2 ай бұрын
x = 0, -3, (-3 ± i*√15)/2
@walterwen2975
@walterwen2975 4 ай бұрын
Math Olympiad: (x + 2)⁴ + (x + 1)⁴ = 17; x = ? Second method; Let: y = x + 3/2, a = 1/2; (x + 2)⁴ + (x + 1)⁴ = (y + a)⁴ + (y - a)⁴ = 17 (y ± a)⁴ = y⁴ ± 4ay³ + 6a²y² ± 4a³y + a⁴, (y + a)⁴ + (y - a)⁴ = 2y⁴ + 12a²y² + 2a⁴ = 17 2y⁴ + 12(1/4)y² + 2(1/16) = 17, 2y⁴ + 3y² + 1/8 = 17, 16y⁴ + 24y² + 1 = 136 16y⁴ + 24y² - 135 = 0, (2y)⁴ + 6(2y)² - 135 = [(2y)² - 9][(2y)² + 15] = 0 (2y)² - 9 = 0, (2y)² = 9; 2y = ± 3 or (2y)² + 15 = 0, 2y = ± i√15; y = x + 3/2 2y = 2(x + 3/2) = 2x + 3 = ± 3; x = 0 or x = - 3 2y = 2(x + 3/2) = 2x + 3 = ± i√15; x = (- 3 ± i√15)/2
@oahuhawaii2141
@oahuhawaii2141 2 ай бұрын
(x + 2)⁴ + (x + 1)⁴ = 17 We see x = 0, -3 are 2 of 4 solutions. We'll use them for factoring. Let y = x + 1 to ease the work. (y + 1)⁴ + y⁴ = 17 y⁴ + 4*y³ + 6*y² + 4*y + 1 + y⁴ = 17 2*y⁴ + 4*y³ + 6*y² + 4*y - 16 = 0 y⁴ + 2*y³ + 3*y² + 2*y - 8 = 0 (y - 1)*(y³ + 3*y² - 6*y - 8) = 0 (y - 1)*(y + 2)*(y² + y + 4) = 0 y = 1, -2, (-1 ± i*√15)/2 x = y - 1 = 0, -3, (-3 ± √15)/2
@walterwen2975
@walterwen2975 4 ай бұрын
Math Olympiad: (x + 2)⁴ + (x + 1)⁴ = 17; x = ? Let: y = x + 2; y⁴ + (y - 1)⁴ = 2y⁴ - 4y³ + 6y² - 4y + 1 = 17 2y⁴ - 4y³ + 6y² - 4y = 16, y⁴ - 2y³ + 3y² - 2y - 8 = 0 (y⁴ - 2y³ + y²) + (2y² - 2y) - 8 = 0, (y² - y)² + 2(y² - y) - 8 = 0 (y² - y - 2)(y² - y + 4) = (y + 1)(y - 2)(y² - y + 4) = 0 y + 1 = 0, y = - 1; y - 2 = 0, y = 2 or y² - y + 4 = 0, y = (1 ± i√15)/2 x = y - 2: x = - 3; x = 0 or x = (1 ± i√15)/2 - 2 = (- 3 ± i√15)/2 Answer check: x = - 3: (x + 2)⁴ + (x + 1)⁴ = (- 1)⁴ + (- 2)⁴ = 1 + 16 = 17; Confirmed x = 0: 2⁴ + 1⁴ = 16 + 1 = 17; Confirmed x = (- 3 ± i√15)/2: y = x + 2, y² - y + 4 = 0, y² - y = - 4 (x + 2)⁴ + (x + 1)⁴ = 2(y⁴ - 2y³ + 3y² - 2y) + 1 = 2[(y² - y)² + 2(y² - y)] + 1 = 2[(- 4)² + 2(- 4)] + 1 = 2(16 - 8) + 1 = 17; Confirmed Final answer: x = - 3, x = 0, Two complex value roots, if acceptable; x = (- 3 + i√15)/2 or x = (- 3 - i√15)/2
@NNaween
@NNaween 4 ай бұрын
Nice explanation @naweenraaj
@is7728
@is7728 4 ай бұрын
Maybe this better? Let h be x + 1. (h + 1)^4 + h^4 = 17 h^4 + 4h^3 + 6h^2 + 4h + 1 + h^4 = 17 2h^4 + 4h^3 + 6h^2 + 4h - 16 = 0 h^4 + 2h^3 + 3h^2 + 2h - 8 = 0 When h = 1, the eqn is satisfied. ∴ x = 0 h^3 + 3h^2 + 6h + 8 = 0 When h = -2, the eqn is satisfied. ∴ x = -3 h^2 + h + 4 = 0 h = ( -1 +- √(1 - 16) ) / 2 = -0.5 +- √15 i / 2 ∴ x = -1.5 +- √15 i / 2
@oahuhawaii2141
@oahuhawaii2141 2 ай бұрын
@is7728: It turns out that no substitution is faster and less error-prone. Upon inspection of the original equation, the values in parentheses work for 2⁴+1⁴ and (-1)⁴+(-2)⁴ . Thus, we know x = 0 and x = -3 . We know x and x+3 are factors of the quartic equation. Factor them out to leave a quadratic equation for the complex conjugate pair of roots, (-3 ± i*√15)/2 . (x⁴ + 4*2*x³ + 6*2²*x² + 4*2³*x + 2⁴) + (x⁴ + 4*x³ + 6*x² + 4*x + 1) = 17 2*x⁴ + 12*x³ + 30*x² + 36*x + 17 = 17 x⁴ + 6*x³ + 15*x² + 18*x = 0 x*((x + 3)*x² + (x + 3)*3*x + (x + 3)*6) = 0 x*(x + 3)*(x² + 3*x + 6) = 0 x = 0, -3, (-3 ± i*√15)/2
@is7728
@is7728 2 ай бұрын
@@oahuhawaii2141 But your factorization from cubic to quadratic eqns is quite subtle to notice
@oahuhawaii2141
@oahuhawaii2141 2 ай бұрын
The polynomial coefficients used in synthetic division, with annotations: 1 6 15 18 / 1 3 = 1 3 6 1 3 { 1 3 * 1 _ _ } 0 3 15 18 0 3 9 { 1 3 * 0 3 _ } 0 0 6 18 0 0 6 18 { 1 3 * 0 0 6 } { 1 _ _ + 0 3 _ + 0 0 6 = 1 3 6 }
@E.h.a.b
@E.h.a.b 4 ай бұрын
Let y = x + 3/2 (y + 1/2)^4 + (y - 1/2)^4 = 17 (y^2 + y + 1/4)^2 + (y^2 - y + 1/4)^2 = 17 [ (y^2 + 1/4) + y ]^2 + [ (y^2 + 1/4) - y ]^2 = 17 [ (y^2 + 1/4)^2 + 2 y (y^2 + 1/4) + y^2 ] + [ (y^2 + 1/4)^2 - 2 y (y^2 + 1/4) + y^2 ]=17 2((y^2 + 1/4)^2 + y^2) = 17 2(y^4 + 1/2 y^2 + 1/16 + y^2) = 17 2 y^4 + y^2 + 1/8 + 2 y^2 - 17 = 0 2 y^4 + 3 y^2 - 135/8 = 0 y^2 = (-3 +/- √(9 - 4 * 2 * (- 135/8)))/(2*2) y^2 = (-3 +/- √(9 + 135))/4 y^2 = (-3 +/- √144)/4 y^2 = (-3 +/- 12)/4 y^2 = (-3 + 12)/4 = 9/4 //y^2 = (-3 - 12)/4 < 0 so it is rejected y = +/- 3/2 x = y - 3/2 = +/- 3/2 - 3/2 x = (0, -3)
@Altair705
@Altair705 4 ай бұрын
I made the same variable change. You could have developped faster by using the binomial expansion method: (a+b)^4=a⁴+4a³b+6a²b²+4ab³+b⁴ It was even possible to skip the calculation of the terms in y and y³ by noticing that if y is solution then -y is also a solution, so only the even powers of y would remain. Best method in my opinion.
@ramesankd1604
@ramesankd1604 28 күн бұрын
1
@thomaslangbein297
@thomaslangbein297 4 ай бұрын
What did we learn?
@稲次将人
@稲次将人 3 ай бұрын
2^4=16だからX+2=2 X=0 (-2)^2=16だからX+1=-2 X=-3 ∴X=0,-3
@oahuhawaii2141
@oahuhawaii2141 2 ай бұрын
x = 0, -3, (-3 ± i*√15)/2
@稲次将人
@稲次将人 Ай бұрын
I think there are no imaginary numbers in our would.
@oahuhawaii2141
@oahuhawaii2141 Ай бұрын
@稲次将人: Complex numbers are needed in STEM fields, such as physics, electronics, and math.
@yiutungwong315
@yiutungwong315 4 ай бұрын
Real Number X = 0 and (-3) 16 + 1 = 17
@santer70
@santer70 3 ай бұрын
And about the unreal solutions ?
@oahuhawaii2141
@oahuhawaii2141 2 ай бұрын
Too complex for him perhaps?
@davidthomas1467
@davidthomas1467 2 ай бұрын
Why are you making this so bloody complicated. It's crap like this that made me fail Algebra 2 in HS. I find your videos maddening.
@Yureka-ox5jn
@Yureka-ox5jn 3 ай бұрын
So cool thanks
@learncommunolizer
@learncommunolizer 3 ай бұрын
Thank you very much!!
@Yureka-ox5jn
@Yureka-ox5jn 3 ай бұрын
Your welcome😀
@hakanerci4372
@hakanerci4372 2 ай бұрын
X=-3 (-3+2)⁴+(-3+1)⁴=17
@oahuhawaii2141
@oahuhawaii2141 2 ай бұрын
x = 0, -3, (-3 ± i*√15)/2
@nasrullahhusnan2289
@nasrullahhusnan2289 4 ай бұрын
Note the special contion here. As 2⁴+1⁴=17 and the power is even then the sign of 2 can be + or -. Similarly the sign og 1. Both can be the same sign, or not. And x is found accordingly.
@oahuhawaii2141
@oahuhawaii2141 2 ай бұрын
His obfuscated way is unnecessarily complicated. It's faster to do the binomial expansion and solve. It turns out that no substitution is faster and less error-prone. (x⁴ + 4*2*x³ + 6*2²*x² + 4*2³*x + 2⁴) + (x⁴ + 4*x³ + 6*x² + 4*x + 1) = 17 2*x⁴ + 12*x³ + 30*x² + 36*x + 17 = 17 x⁴ + 6*x³ + 15*x² + 18*x = 0 ‡ x*((x + 3)*x² + (x + 3)*3*x + (x + 3)*6) = 0 x*(x + 3)*(x² + 3*x + 6) = 0 x = 0, -3, (-3 ± i*√15)/2 { ‡ Upon inspection of the original equation, the values in parentheses work for (2)⁴+(1)⁴ and (-1)⁴+(-2)⁴ . Thus, we know x = 0 and x = -3 , and that x and x+3 are factors of the quartic equation. Factor them out to leave a quadratic equation for the complex conjugate pair of roots, x = (-3 ± i*√15)/2 . }
@umranbayndr4150
@umranbayndr4150 4 ай бұрын
x=0,x=-3
@catchbook4268
@catchbook4268 2 ай бұрын
0 / -3
@peterlangdon6043
@peterlangdon6043 3 ай бұрын
To be honest....videos like this tend to put students off mathematics by making it seem more complicated than it actually is....the 2 real solutions are easily derived by inspection....given the length of the video, I thought the 2 imaginary roots were going to be derived. We should be trying to teach mathematical instinct rather than complicated 'recipes'.
@joekfwu1
@joekfwu1 3 ай бұрын
17 = 1^4 + 2^4, so (x+1)^4=2^4, (x+2)^4=1^4 then x = -3. what is he actually doing?
@oahuhawaii2141
@oahuhawaii2141 2 ай бұрын
His obfuscated way is unnecessarily complicated. It's faster to do the binomial expansion and solve. It turns out that no substitution is faster and less error-prone: (x⁴ + 4*2*x³ + 6*2²*x² + 4*2³*x + 2⁴) + (x⁴ + 4*x³ + 6*x² + 4*x + 1) = 17 2*x⁴ + 12*x³ + 30*x² + 36*x + 17 = 17 x⁴ + 6*x³ + 15*x² + 18*x = 0 ‡ x*((x + 3)*x² + (x + 3)*3*x + (x + 3)*6) = 0 x*(x + 3)*(x² + 3*x + 6) = 0 x = 0, -3, (-3 ± i*√15)/2 { ‡ Upon inspection of the original equation, the values in parentheses work for (2)⁴+(1)⁴ and (-1)⁴+(-2)⁴ . Thus, we know x = 0 and x = -3 , and that x and x+3 are factors of the quartic equation. Factor them out to leave a quadratic equation for the complex conjugate pair of roots, x = (-3 ± i*√15)/2 . }
@CharlesChen-el4ot
@CharlesChen-el4ot 3 ай бұрын
X=0; Don't do it stupidly ?! 2 power 4 = 16 1 power 4 = 1 Thus 16+ 1= 17
@oahuhawaii2141
@oahuhawaii2141 2 ай бұрын
Upon inspection of the original equation, the values in parentheses work for 2⁴+1⁴ and (-1)⁴+(-2)⁴ . Thus, we know x = 0 and x = -3 . We know x and x+3 are factors to the quartic equation. Factor them out to leave a quadratic equation for the complex conjugate pair of roots, (-3 ± i*√15)/2 .
@ramesankd1604
@ramesankd1604 28 күн бұрын
പ്ളീസ്കോറെഡ് utharm
@Duc_Tung
@Duc_Tung 3 ай бұрын
I solve it by other method.
@edwardwang7929
@edwardwang7929 4 ай бұрын
Immediately guessing, x=0.
@oahuhawaii2141
@oahuhawaii2141 2 ай бұрын
x = 0, -3, (-3 ± i*√15)/2
@rgrinnell
@rgrinnell 4 ай бұрын
X = 0
@asdcuganda7572
@asdcuganda7572 2 ай бұрын
Just know I got lost😂😂😂😂
@Bertin-q3y
@Bertin-q3y 4 ай бұрын
X=0 et.....
@oahuhawaii2141
@oahuhawaii2141 2 ай бұрын
x = 0, -3, (-3 ± i*√15)/2
@丁爸爸-w3f
@丁爸爸-w3f 4 ай бұрын
一秒钟做出来,0和-3.还有其他解么?
@lthakur92411
@lthakur92411 3 ай бұрын
no
@oahuhawaii2141
@oahuhawaii2141 2 ай бұрын
x = 0, -3, (-3 ± i*√15)/2
@개귀엽-f6y
@개귀엽-f6y Ай бұрын
식을 보면 3초만에 답이 나오는데?
@darliney
@darliney Ай бұрын
풀이과정은 이해못하나 암산으로 -3나옴
@blue_white1759
@blue_white1759 3 ай бұрын
Only 2 secands x=0 and -3
@oahuhawaii2141
@oahuhawaii2141 2 ай бұрын
x = 0, -3, (-3 ± i*√15)/2
@blue_white1759
@blue_white1759 2 ай бұрын
@@oahuhawaii2141 forr x€R 👍
@leungwingman2061
@leungwingman2061 3 ай бұрын
用二项式定理啦
@КатяРыбакова-ш2д
@КатяРыбакова-ш2д 2 ай бұрын
0; -3.
@oahuhawaii2141
@oahuhawaii2141 2 ай бұрын
x = 0, -3, (-3 ± i*√15)/2
@ЛекаКузнец
@ЛекаКузнец 3 ай бұрын
ОТВЕТ: Х=-3
@oahuhawaii2141
@oahuhawaii2141 Ай бұрын
Equation: (x+2)⁴ + (x+1)⁴ = 17 ... is equivalent to: 2*x*(x+3)*(x²+3*x+6) = 0 ... which means: x = 0, -3, (-3 ± i*√15)/2 .
@makotekmachineautomationte9380
@makotekmachineautomationte9380 2 ай бұрын
Ardışık 2 sayı toplamı 17. 9+8= 17 uğraşmayın bu kadar😊 şaka yapıyorum
@angelarhule4239
@angelarhule4239 2 ай бұрын
I tried this 1st, got the answer in5 seconds, my god his procedure is very confusing, don’t understand a thing he’s doing, kmt 🤦‍♀️, y this long procedure?. One math problem should never take so long, very confusing, u turn off ppl from math
@oahuhawaii2141
@oahuhawaii2141 2 ай бұрын
You didn't find all 4 roots in 5 seconds.
@박봉추-i7n
@박봉추-i7n 4 ай бұрын
0
@oahuhawaii2141
@oahuhawaii2141 Ай бұрын
Equation: (x+2)⁴ + (x+1)⁴ = 17 ... is equivalent to: 2*x*(x+3)*(x²+3*x+6) = 0 ... which means: x = 0, -3, (-3 ± i*√15)/2 .
@lifeofheaven-co4fr
@lifeofheaven-co4fr Ай бұрын
Teacher passed over imaginary number. There are 4 answers
@angelinazheng9386
@angelinazheng9386 3 ай бұрын
0。
@oahuhawaii2141
@oahuhawaii2141 2 ай бұрын
x = 0, -3, (-3 ± i*√15)/2
@TWJRPGGamming
@TWJRPGGamming 2 ай бұрын
0
Germany | Math Olympiad Exponential Problem
3:53
Learncommunolizer
Рет қаралды 11 М.
Harvard University Admission Interview Tricks
13:09
Super Academy
Рет қаралды 138 М.
When Cucumbers Meet PVC Pipe The Results Are Wild! 🤭
00:44
Crafty Buddy
Рет қаралды 56 МЛН
FOREVER BUNNY
00:14
Natan por Aí
Рет қаралды 22 МЛН
Из какого города смотришь? 😃
00:34
МЯТНАЯ ФАНТА
Рет қаралды 2,4 МЛН
Twin Telepathy Challenge!
00:23
Stokes Twins
Рет қаралды 81 МЛН
China | A Very Nice Algebra Problem | Math Olympiad
10:20
Math Hunter
Рет қаралды 322 М.
France | Can you solve this ? | Math Olympiad
18:42
Learncommunolizer
Рет қаралды 146 М.
China | Can you solve this ? | Math Olympiad
14:29
Learncommunolizer
Рет қаралды 36 М.
A Very Nice Math Olympiad Problem | Solve for x? | Algebra Equation
16:33
Spencer's Academy
Рет қаралды 10 М.
Can you Pass Stanford University Admission Simplification Problem ?
20:02
Germany | A Nice Algebra Problem | Math Olympiad
22:50
SALogic
Рет қаралды 27 М.
A tricky problem from Harvard University Interview
18:11
Higher Mathematics
Рет қаралды 248 М.
When Cucumbers Meet PVC Pipe The Results Are Wild! 🤭
00:44
Crafty Buddy
Рет қаралды 56 МЛН