Multiply by x⁵: 16x⁴-8x³+4x²-2x+1=32x⁵ 1-2x+(2x)²-(2x)³+(2x)⁴-(2x)⁵=0 LHS is sum of 5 elements of a geometric series with 1st element 1 and ratio (-2x). Thus [1-(-2x)⁶]/[1-(-2x)]=0 --> [1+(2x)⁶]/(1+2x)=0 1-(2x)⁶=0 --> [1+(2x)³][1-(2x)³]=0 If x is real: • 1+(2x)³=0 --> x=-½ • 1-(2x)³=0 --> x=½ Therefore x=±½ If x can be imaginary number then • 1+(2x)³=0 (1+2x)[1-(2x)+(2x)²]=0 The imaginary x is from 1-(2x)+(2x)²=0 --> 2x=½[1±isqrt(3)] x=¼[1±isqrt(3)] • Similarly for 1-(2x)³=0 (1-2x)[1+(2x)+(2x)²=0 The imaginary x is from 1+(2x)+(2x)²=0 --> 2x=½[-1±isqrt(3)] x=¼[-1±isqrt(3)]
@kareolaussen8199 күн бұрын
With y=-2x the equation can be written y^5+y^4+y^3+y^2+y+1=0, or (y^6-1)/(y-1)=0 The five solutions are all solutions of y^6=1 except y=1. I.e., x = (1/2)*exp(iπn/3), for n= -2, -1, 0, 1, 2.
here is an easier solution: Let a=1/x, and move 32 to the other side, and rewrite the equation with high power to the low power: (a**5 - 2*a**4 + 4*a**3) - (8*a**2 +16*a - 32) =a**3 *(a**2-2*a+4) - 8*(a**2-2*a+4) =(a**2-2*a+4) (a**3-8) =(a-2)**2 * (a**3-8) so a=2 for real solution