Canada Math Olympiad | A Very Nice Geometry Problem

  Рет қаралды 4,819

Math Booster

Math Booster

Күн бұрын

Пікірлер: 16
@xualain3129
@xualain3129 5 ай бұрын
We can solve it only using the law of cosine for three angles - theta,angle(ABP)=a and angle(CBP)=b. Let AB=x cos(a)=(1+x^2-sqrt(7)^2)/(2*1*x)=(x^2-6)/(2* x) cos(b)=(1+x^2-3^2)/(2*1*x)=(x^2-8)/(2*x) a+b=pi/2 cos(b)=sin(a) from cos(a)^2+sin(a)^2=1 we can get an equation of x X^4-16*x^2+50=0 from which x^2=8+sqrt(14) . With x known, we can then calculate cos(theta)=(1+sqrt(7)^2-(8+sqrt(14))/(2*1*sqrt(7))=-sqrt(2)/2 Which means theta=3*pi/4 or 145 degrees.
@hongningsuen1348
@hongningsuen1348 5 ай бұрын
I like solution without construction. Good construction is like a hidden entrance to an easy way but finding a good entrance is really an art.
@xualain3129
@xualain3129 5 ай бұрын
@@hongningsuen1348 I totally agree with you. I have difficulty finding the right construction to solve geometry problems. Thanks to trigonometry, I can solve some of them without construction at all.
@davidellis1929
@davidellis1929 5 ай бұрын
You don't need the Law of Cosines. Once we know P'P=sqrt(2), we can see that triangle P'PA is a right triangle, since P'P^2+PA^2 = 2+7 = 9 = AP'^2. I've seen the ingenious rotation trick in other problems, sometimes creating an equilateral triangle, and it's far from obvious but works great!
@michaeldoerr5810
@michaeldoerr5810 5 ай бұрын
That is probably the first time that I have heard of ever rotating a triangle. And I am not surprised that the Law od Cosines had to be used. When is rotating triangle necessary may I ask? And also theta is an obtuse angle. Would the domain of cosine allow for the existence of acute angles a la Law of Cosines? I think so, but I want to check.
@oscarcastaneda5310
@oscarcastaneda5310 4 ай бұрын
Here's a solution without the Law of Cosines using "Unfolding" : Unfold each of the the three "inner" triangles using the right triangle's sides as hinges. Once done, you'll find two new Isosceles right triangles and can find their hypotenuses. The sides of length "one" become "lined" up perfectly for a straight length of "2". Now, notice the triangle with lengths 2, root(14) and 3root(2), they're a "Pythagorean" triple. From here just add the 45 and 90 degrees for the answer : )
@OverclockingCowboy
@OverclockingCowboy 4 ай бұрын
I think you meant the triangle with lengths 2, root 14, and 3 root 2. Would there still be a Pythagorean Triple if AB is not equal to BC?
@oscarcastaneda5310
@oscarcastaneda5310 4 ай бұрын
@@OverclockingCowboy Gracias, I've made the typing correction . Good Question, it would be fun to investigate this : ) Perhaps not, but looking at it in this manner still gives a triangle whose sides are known and we can calculate the requisite angle to then add 45 degrees to : )
@OverclockingCowboy
@OverclockingCowboy 4 ай бұрын
⁠@@oscarcastaneda5310 If you shorten segment AP, angle theta becomes bigger. So it is apparent that a Pythagorean Triple is not guaranteed even under the condition AB=BC. After unfolding, a new straight line is formed at B with length 2 BP. A new isosceles triangle is formed at A (side length = AP) with side angles = 90 degree - angle A. Thus, the isosceles side angle equals 45 degree only if angle A = 45 degree. Unfolding is still a nice concept with some unique properties.
@oscarcastaneda5310
@oscarcastaneda5310 4 ай бұрын
@@OverclockingCowboy Gracias,... We think Alike.
@giuseppemalaguti435
@giuseppemalaguti435 5 ай бұрын
Io ho usato il teorema dei coseno..dopo i calcoli risulta 2√7(cosθ)^3-8(cosθ)^2-√7cosθ+4=0...1 soluzione è cosθ=1/√2,ma non va bene perché θ è>90...altra soluzione è cosθ=((8-√14)-√(78+16√14))/4√7=-1/√2...θ=135..la cubica diventa (cosθ-1/√2)(cosθ+1/√2)(2√7cosθ-8)=0...quindi l'unico angolo ottuso è 135
@اقرء
@اقرء 5 ай бұрын
Tanks for watching this video
@52soccerstar
@52soccerstar 5 ай бұрын
Stewarts theorem might fail (or work)but If it's too tough don't crack it
@Istaphobic
@Istaphobic 5 ай бұрын
Good problem.
@murdock5537
@murdock5537 5 ай бұрын
φ = 30°; ∎ABCD → AB = AF + BF = (a - y) + y = BC = BG + CG = x + (a - x) = CD = AD = AE + DE = x + (a - x) = a = EG = EP + GP = (a - y) + y; BP = 1; BPA = θ = ? CP = 3; AP = √7 → (a - y)^2 + x^2 + 2 = (a - x)^2 + y^2 = 9; y = √(1 - x^2) → (a^2 - 6)/2a = √(1 - x^2); x^2 = ((a^2 - 8)/2a)^2 → (a^2 - 6)^2 + (a^2 - 8)^2 = 4a^2 → z ∶= a^2 → z = 8 ± √14 → a ≥ 3 → z = 8 + √14 → z = 8 - 2(√7)cos⁡(θ) → cos⁡(θ) = -√2/2 → θ < 6φ → θ = 3φ + 3φ/2 = 9φ/2 btw: ∆ BCP → BCP = α; BC = a; BP = 1; CP = 3 → cos⁡(α) = (a/150)(57 - 4√14) → α ≈ 16,22° ∆ ABP → PAB = β; AB = a; AP = √7; BP = 1 → cos⁡(β) = (√7/350)(√(8+ √14))(49 - 3√14) → β ≈ 11,9°
@RAG981
@RAG981 5 ай бұрын
Cunning
Math Olympiad | A Very Nice Geometry Problem | 2 Different Methods
13:53
Math Olympiad | A Very Nice Geometry Problem | 2 Different Methods
13:44
Happy birthday to you by Secret Vlog
00:12
Secret Vlog
Рет қаралды 6 МЛН
Who's spending her birthday with Harley Quinn on halloween?#Harley Quinn #joker
01:00
Harley Quinn with the Joker
Рет қаралды 26 МЛН
Impossible Geometry Problem
16:57
Math Booster
Рет қаралды 10 М.
Solving the hardest question of a British Mathematical Olympiad
11:26
MindYourDecisions
Рет қаралды 705 М.
1995 British Mathematics Olympiad problem
20:59
Prime Newtons
Рет қаралды 203 М.
Japan Math Olympiad | A Nice Geometry Problem | 2 Methods
17:12
Math Booster
Рет қаралды 11 М.