A Nice Math Olympiad Algebra Problem You Should Know

  Рет қаралды 3,078

Math Booster

Math Booster

Күн бұрын

Пікірлер: 13
@hanswust6972
@hanswust6972 Жыл бұрын
Very nice problem!
@devondevon4366
@devondevon4366 Жыл бұрын
21 Assuming all the variables are positive integers, not equal to each other, then 'r' cannot be greater than 1 (since 2^2 * 16 =64 >48 ); hence r=1. Hence 16 r^2 = 16 Hence p^2 + 4 q^2 = 32; hence q is < than 3 (since 4* 3^2 =36 > 32); hence q= 2. Hence 4q^2 = 4*4=16; p^2 = 16 (32 -16); hence p=4. Hence p^2 + q^2 + r^2 = 16 + 4 + 1 = 21 Answer checking pq + 4qr + 2rp =24 4*2 + 4*2*1 + 2*1*4 = 8 + 8 + 8 =24
@nasrullahhusnan2289
@nasrullahhusnan2289 Жыл бұрын
Your assumption that p, q, and r not equal to each other is not necessary. That they are integers is sufficient assumption, and the second given equation is not needed. The answer will be (p,q,r)={(4,2,1),(-4,-2,-1)}
@nasrullahhusnan2289
@nasrullahhusnan2289 Жыл бұрын
Given: p²+4q²+16r²=48 p, q, and r are integers Take modulo 4: [mod(p,4)]²=0 mod(p,4)=0 It means that p=4k. Plugging to the given equation, after dividing by 4 we get 4k²+q²+4r²=12. Take modulo 4: [mod(q,4)]²=0 Hence q=4w where w=any integer. Plug it to the given equation and divide by 16: k²+(2w)²+r²=3. It means that k²=(2w)²=r²=1 p=4k --> p²=16 q²=(4w)² --> q²=4 r²=1 Hence p²+q²+r²=16+4+1=21 The second given equation.can be replaced by assumption that p, q, and r are integers.
@abdoali6268
@abdoali6268 Жыл бұрын
Keep going ❤
@manojitmaity7893
@manojitmaity7893 Жыл бұрын
If sinA + sin²A + sin³A = 1 ,then what is the value of cos ⁶A - 4cos⁴A +8cos ²A ?
@DARK-mo7jw
@DARK-mo7jw Жыл бұрын
4
@hans7831
@hans7831 Жыл бұрын
It's always 42
@DARK-mo7jw
@DARK-mo7jw Жыл бұрын
@@hans7831 i think something wrong with your method or calculation. Please check it again. It's 4
@manojitmaity7893
@manojitmaity7893 Жыл бұрын
@@DARK-mo7jw How ???
@DARK-mo7jw
@DARK-mo7jw Жыл бұрын
Change all the values of cos in term of sin and then proceed
@markobasej8636
@markobasej8636 Жыл бұрын
4
Algebra Problem from the Math Olympiad: Can You Solve It?
9:34
Math Booster
Рет қаралды 2,3 М.
Nice Olympiad Math | x^2-x^3=12  | Nice Math Olympiad Solution
15:05
OnlineMaths TV
Рет қаралды 1,4 МЛН
The IMPOSSIBLE Puzzle..
00:55
Stokes Twins
Рет қаралды 103 МЛН
Players vs Pitch 🤯
00:26
LE FOOT EN VIDÉO
Рет қаралды 123 МЛН
Motorbike Smashes Into Porsche! 😱
00:15
Caters Clips
Рет қаралды 23 МЛН
Very Nice Geometry Problem From Hungary Math Olympiad
18:35
Math Booster
Рет қаралды 5 М.
Can you Solve Harvard University Admission Aptitude Mathematics ?
15:42
Find the missing area | A Very Nice Geometry Problem
10:26
Math Booster
Рет қаралды 9 М.
Math Olympiad Problem, which is greater?
7:25
Math Window
Рет қаралды 188 М.
Animation vs. Math
14:03
Alan Becker
Рет қаралды 74 МЛН
The Algebra Step that EVERYONE Gets WRONG!
17:54
TabletClass Math
Рет қаралды 229 М.