Philippines Maths Olympiad 2020 Problem | Algebra | 2 Different Methods

  Рет қаралды 6,126

Math Booster

Math Booster

Күн бұрын

Пікірлер: 29
@honestadministrator
@honestadministrator Жыл бұрын
Let m, n be roots of this equation m + n = Sum of the roots = - b Hereby b is an integer Again m n = product of the roots = - 3 b (m - n ) ^2 = ( m + n) ^2 - 4 m n = b^2 + 12 b = ( b + 6 ) ^2 - 36 Hereby (b + 6 ) ^2 - ( m -n) ^2 = 36 = sum of consecutive odd integer 36 = 17 + 19 = (10)^2 - 8^2 b + 6 = 10, -10 i.e. m + n = -b = - 4, 16 at m + n = 16 and m - n = 8 m = 12 n = 4 , b = -16 at m + n = -4 and m - n = 8 m = 2 n = -6 , b = 4 m = 12 n = 4 , b = -16
@MathOrient
@MathOrient Жыл бұрын
A simple equation, yet deep problem. Thanks for sharing :) It combines algebra and number theory.
@benjaminvatovez8823
@benjaminvatovez8823 Жыл бұрын
Thank you. I propose a 3rd method: Note that (x not= 3), thus (-b)=x²/(x-3)=x+3+(9/(x-3)) -b=alpha+beta in Z, thus (x-3) divides 9 then (x-3) in {-9;-3;-1;1;3;9} Put it in (-b)=(x-3)+6+(9/(x-3)), we get b in {-16;-12;0;4} and we get the answer.
@alexey.c
@alexey.c Жыл бұрын
The first solution has a flaw. D may not be a perfect square for an integer x. Example: b = 1/4, D = 49/16, x = {-1, 3/4}
@MathBooster
@MathBooster Жыл бұрын
3/4 is not integer. (x is integer means both the values of x is integer)
@marianne-wt8it
@marianne-wt8it Жыл бұрын
Please bring more questions on quadratic equation it will help a lot 🤧
@peterkrenn9051
@peterkrenn9051 Жыл бұрын
Dear! Don't cry Honey, don't cry. In the second method you have to use, only the Viete formulas and the number 9 you have to factorise in all kind of methods. This will drive you to the solution. ❤❤🙂🙂🙂
@sevencube3
@sevencube3 Жыл бұрын
The quadratic formula is the one that everyone learns, and thus belongs in Tier 2, which is Over Used, the cubic is Rarely Used (Tier 5), and the quartic formula, for all intents and purposes, is Never Used (Tier 6).
@labzioui1
@labzioui1 Жыл бұрын
…if x is an integer , then D must be perfect square and (yes and) -b ±sqrtD will be divisible by 2a .
@JabirKarachiwala
@JabirKarachiwala Жыл бұрын
One assumption. Is it necessary for discriminant of the quadratic equation to be a perfect square? It could be in decimal , so its square root also being in decimal with the value of b being in decimal would make the root as integer.
@MathBooster
@MathBooster Жыл бұрын
If x is integer that means both the values of x is integer. So, now you can try to put decimal values, you will not get both the values of x as integer (if square root of D is not integer)
@mathsjourney6608
@mathsjourney6608 Жыл бұрын
Great job bro 🙏
@ejrupp9555
@ejrupp9555 Жыл бұрын
Just here to figure out what the question is ... and why you would want to know it.
@vijayannair2316
@vijayannair2316 Жыл бұрын
Verynice
@MathBooster
@MathBooster Жыл бұрын
Thank you 🙂
@piman9280
@piman9280 Жыл бұрын
If x is an integer, then D must be a perfect square and D *and* b must be even.
@MathBooster
@MathBooster Жыл бұрын
b can be odd also, if square root of D is odd.
@alexey.c
@alexey.c Жыл бұрын
Since b may not be an integer, then D may not be a perfect square for an integer x: b = 1/4, D = 49/16, x = -1
@MathBooster
@MathBooster Жыл бұрын
@Alex Chuvilskiy X is integer means both the values of X is integer. (So if b is not integer then both the values of X can't be integer. So, b will be integer)
@piman9280
@piman9280 Жыл бұрын
@@MathBooster True.
@TrebolManger
@TrebolManger Жыл бұрын
Other method! x² + b x - 3 b = 0 Formula Quadratic √(b (b + 12)) - b x = ⎯⎯⎯⎯⎯⎯⎯----------- 2 Condition: b even replace b=2n √((2 n) (2 n + 12)) - 2 n x = ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯- 2 Algebra x = √(n (n + 6)) - n Condition it's (+) n (n + 6) > 0 n < -6 ∨ n > 0 Summary Table n b = 2 n x² + bx - 3 b = 0 X1 X2 -8 -16 x² - 16 x + 48 = 0 12 4 -6 -12 x² - 12 x + 36 = 0 6 Only 0 0 x² = 0 0 Only 2 4 x² + 4 x - 12 = 0 -6 2 Sum -24 -.- -.- -.-
@sumit180288
@sumit180288 Жыл бұрын
You are just using hit and trial and how did you ensure that there are no other integer solutions for more values of n, since n < -6, n>0 there are infinite possibilities of n
@TrebolManger
@TrebolManger Жыл бұрын
@@sumit180288 Hai risolto e confermato o pensi che ci siano più soluzioni? quali trovo? O semplicemente criticare e minare il lavoro degli altri?
@sirak_s_nt
@sirak_s_nt Жыл бұрын
Can m be -ve? As √D = m?
@MathBooster
@MathBooster Жыл бұрын
No, m can be any positive integer.
@sirak_s_nt
@sirak_s_nt Жыл бұрын
Then in 6:42 case m is -ve? I doubt is also if we right √D = m thn m can be +ve but whn we write m²=D, thn m cn be both -ve n +ve so which case we tke for solving? Plz tell sir
@MarieAnne.
@MarieAnne. Жыл бұрын
By convention, √D ≥ 0. This is why we put ± in front of √D: x = (−b ± √D)/(2a) For example, if we had D = 16, then √D = 4 and we get: x = (−b ± 4)/(2a) But if we allow √D = −4, then we get: x = (−b ± (−4))/(2a) = (−b ∓ 4)/(2a) So if you allow √D = m to be either positive or negative, you get 4 results, but only 2 answers. So what's the point? Furthermore, since we often use exact numerical values in math (π instead of 3.14 or √2 instead of 1.41), it's important that we have rules that we must stick to. For example, tan(60°) = √3, while tan(120) = −√3. If √3 were allowed to be either positive or negative, then we'd have two values for each of tan(60°) and tan(120°), which is not possible. That being said, at 5:25, when finding factors of 36 so that (b+6+m)(b+6−m) = 36, we can assume that b+6+m ≥ b+6−m. This will eliminate the duplicate solutions. Also, in the second method where we denote the root as α and β, we could also assume that α ≤ β without loss of generality. And again, this will eliminate duplicate solutions for b.
@hazalouldi7130
@hazalouldi7130 Жыл бұрын
Always on top
@kinno1837
@kinno1837 Жыл бұрын
First
A Nice Problem of Trigonometry | Algebra
6:24
Math Booster
Рет қаралды 2 М.
Walking on LEGO Be Like... #shorts #mingweirocks
00:41
mingweirocks
Рет қаралды 6 МЛН
PRANK😂 rate Mark’s kick 1-10 🤕
00:14
Diana Belitskay
Рет қаралды 8 МЛН
бабл ти гель для душа // Eva mash
01:00
EVA mash
Рет қаралды 8 МЛН
A Nice Algebra Challenge | Maths Olympiad | 2 Different Methods
13:39
Solving An Insanely Hard Problem For High School Students
7:27
MindYourDecisions
Рет қаралды 3,5 МЛН
Russian Math Olympiad 1983 Problem | 3 Different Methods to Solve
23:29
A Nice Algebra Problem | Find the value of X | Maths Olympiad
9:38
1995 British Mathematics Olympiad problem
20:59
Prime Newtons
Рет қаралды 200 М.
Many Adults Failed to Solve This | Mathematics
14:34
Math Booster
Рет қаралды 176 М.
Nice Olympiad Math | x^2-x^3=12  | Nice Math Olympiad Solution
15:05
OnlineMaths TV
Рет қаралды 1,4 МЛН
Walking on LEGO Be Like... #shorts #mingweirocks
00:41
mingweirocks
Рет қаралды 6 МЛН